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Abstract. In this paper Fluid-structure interaction (FSI) simulations of artery aneurysms are
carried out where both the fluid flow and the hyperelastic material are incompressible. We fo-
cus on time-dependent formulations adopting a monolithic approach, where the deformation of
the fluid domain is taken into account according to an Arbitrary Lagrangian Eulerian (ALE)
scheme. The exact Jacobian matrix is implemented by using automatic differentiation tools. The
system is modeled using a specific equation shuffling that assures an optimal pivoting. We pro-
pose to solve the resulting linearized system at each nonlinear outer iteration with a GMRES
solver preconditioned by a geometric multigrid algorithm with an Additive Schwarz Method
(ASM) smoother.

In order to test our numerical method on possible hemodynamics applications, we describe
several benchmark settings. The configurations consist of realistic artery aneurysms where
hybrid meshes are employed. Both two and three-dimensional benchmarks are considered. We
show numerical results for the described aneurysm geometries focusing on pulsatile inflow con-
ditions. Parallel implementation is addressed and a case of endovascular stent implantation on
a cerebral aneurysm is presented.
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1 INTRODUCTION

Fluid-structure interaction (FSI) of aneurysms and, in general, the field of computational
vascular and cardiovascular modeling has matured immensely over the last decade. There
have been several patient-specific FSI simulations of aneurysms, involving both intracranial
aneurysms ([7], [24], [25], [26], [28]) and AAA, namely abdominal aortic aneurysms ([12],
[31], [18], [22]). Numerous advances in the simulation technology were proposed, but the ma-
jority of them involved only computational fluid dynamics (CFD). When pure CFD is used for
vascular blood flow simulations, it is assumed that the vessel wall remains rigid. The rigid wall
assumption does not properly reflect the elastic nature of arterial walls and the behavior of real
blood vessels, since vessel walls are deformed by the action of blood flow forces and, in turn,
this deformation alters the details of blood flow. For the modeling to be realistic, coupled FSI
modeling must be employed. In this work we consider a monolithic coupling between the fluid
and the solid, focusing on time-dependent formulations. Blood has been considered ad an in-
compressible Newtonian fluid and a hyperelastic solid has been used to represent vessel wall
tissue. We describe the solid motion in a Lagrangian way, while the fluid is observed in Eulerian
fashion. The deformation of the fluid domain is taken into account according to an Arbitrary
Lagrangian Eulerian (ALE) approach, which is one of the most popular techniques in the FSI
community ([4], [13], [23], [29]).
To linearize the FSI system, Newton linearization is performed, therefore the evaluation of the
Jacobian associated to the fluid-solid coupled state equations is required. An analytic expres-
sion of the exact Jacobian may be determined using shape derivative calculus [14], but in certain
cases, for simplicity or time performance, it may be more convenient to consider the use of ap-
proximate Jacobians. For this purpose, a divided difference approach may be used, as in [16].
In this work, we have chosen to compute the exact Jacobian matrix with automatic differenti-
ation tools provided by the Adept software package ([15]), implemented in an in-house finite
element library C++ Femus library. Automatic differentiation is a very convenient tool that
requires little code modification.
To solve the linearized FSI system, we propose a monolithic Newton-Krylov solver precon-
ditioned by a geometric multigrid algorithm. Newton linearization is performed as an outer
iteration. Multigrid F-cycle and V-cycle schemes are considered with a Richardson smoother
preconditioned by an additive Schwarz method (ASM). Both multigrid and domain decomposi-
tion methods draw a lot of attention within the FSI community. In [27] and [21], where hemody-
namics applications are also addressed, a geometric multigrid solver with a Multilevel Pressure
Schur Complement (MPSC) Vanka-like smoother is considered. In [30] a Newton-Krylov al-
gorithm with an overlapping additive Schwarz preconditioner is considered in applications to
parallel three-dimensional blood flow simulations.
For validation and evaluation of the accuracy and performance of the proposed methodology,
we describe several biomedical benchmark settings. We concentrate on cerebral aneurysms,
presenting numerical studies for both 2D and 3D aneurysm configurations. The 2D geometry is
based on the benchmark setting proposed in [27] and [21], and the 3D shape is an extension of
the 2D configuration based on a real aneurysm view proposed on [27].
We also propose simulations of stenting technology applied to the 2D and 3D geometries. For
the 2D configuration, flow diverter (FD) stents with five and eleven struts have been modeled.
Stents are placed on the aneurysm neck and are characterized by very thin wires (30− 100µm).
It’s known in the literature ([17], [33]) that the large difference in scale between the stent struts
and aneurysm neck can create technical difficulties in the mesh generation and in the conver-
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gence of consequent FSI or CFD calculations. To resolve such meshing difficulties, two possible
options can be explored: adaptive embedding techniques and porous medium modeling. With
the former approach, vessel walls are treated with body-fitted unstructured grids, and stents are
embedded in the grids; moreover, adaptive meshing refinement is performed near the stents
([10], [8]). A more recent technique simulates the effect of a FD through the use of a porous
medium layer ([3], [33], [19]). Advantages of the porous medium method include the reduction
of the number of simulation mesh elements, with the resulting reduction of computational time.
In this paper, we decided to model a FD as a porous medium and, for the 2D configuration, we
compared the results with the previous mentioned cases, where stents with five and eleven struts
have been considered. In the 3D geometry, the porous medium approach has been used as well
to simulate the effect of a FD. To the authors knowledge, the present study is the first of its kind
that performs FSI computations in a stented cerebral aneurysm where the the flow diverter is
modeled as a porous medium.
The paper is organized as follows. In Section 2 we present the strong formulations of the
time-dependent incompressible FSI problems under investigation. In section 3 describe our
Monolithic Newton-Krylov solver, illustrating the features of the multigrid preconditioner with
domain decomposition smoothing. Numerical results of benchmark problems are presented in
Sections 4 and 5. Finally, we draw our conclusions.

2 FORMULATION OF THE FSI PROBLEM

Let Ωt = Ωf
t ∪ Ωs

t ⊂ Rn be the current configuration of fluid and solid at time t and let
Ω̂ = Ω̂f ∪ Ω̂s ⊂ Rn be a reference configuration. Clearly, Ω̂f ,Ωf

t and Ω̂s,Ωs
t are referred

to fluid and solid, respectively. Any reference configuration can be equivalently chosen in
principle. The natural choice is the initial configuration, Ω0 = Ω̂.
Let Γit = Ωf

t ∩ Ωs
t and Γ̂i = Ω̂f ∩ Ω̂s be the interface between solid and fluid in the current and

reference configuration, respectively. Moreover, we define the parts of the boundary adjacent
only to the fluid or only to the solid as Γft , Γst and Γ̂ft , Γ̂st in the current configuration and
reference configuration, respectively. In the following we will use the notations ∇̂ or∇ to refer
to the gradient operators and the symbols n̂ or n to denote the outward unit normal fields in the
reference or in the current configuration, respectively.
For every domain Dt ⊂ Rn (which may change in time), we also define the cylinder QDt as

QDt = {(x, t) s.t. x ∈ Dt, t ∈ [0, T ]} . (1)

The domains {Ω̂s, QΩ̂s} are called Lagrangian domains and the fields qs(x̂) or qs(x̂, t) defined
on them are called Lagrangian fields. The domain Ω̂s is initially occupied by the solid we
observe. We follow the motion of the solid in a Lagrangian way. The domains {Ω̂f , QΩ̂f} are
called ALE domains and the fields qf (x̂) or qf (x̂, t) defined on them are called ALE fields. The
domain Ω̂f is the domain on which we initially observe the fluid motion in a Eulerian way.
As a consequence of the solid movement, the domain on which we observe the fluid motion
changes in time as well, so that we need to define a deformation for the fluid domain. The
domain Ωf

t is occupied only by fluid at each time t. The moving domains Ωf
t and Ωs

t and
the corresponding cylinders are called Eulerian domains, and fields q(x) or q(x, t) defined on
Eulerian domains are called Eulerian fields. Notice that the Eulerian cylinder has a variable
base in time.
In order to describe the motion of the fluid and solid domains, let us define a t-parametrized
family of invertible and sufficiently smooth mappings Xt of the reference configuration Ω̂ to the
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deformed ones Ωt, so that

Xt : Ω̂→ Ωt , Xt(x̂) := x̂ + d(x̂, t) . (2)

The field d(x̂, t) is called displacement field. The displacement field d(x̂, t) is determined
separately in the fluid and solid parts as a solution of two different subproblems. Its restrictions
df (x̂, t) and ds(x̂, t) are referred to as fluid domain displacement (or ALE displacement) and
solid displacement, respectively. They are required to take on common values at the interface,
namely

ds(x̂, t) = df (x̂, t) , x̂ ∈ Γ̂i . (3)

For every (x̂, t) ∈ QΩ̂, we also define

F(d(x̂, t)) = ∇̂Xt(x̂) = I + ∇̂d(x̂, t) , (4)
J(d(x̂, t)) = det F(d(x̂, t)) , (5)

B(d(x̂, t)) = F(d(x̂, t))FT (d(x̂, t)) . (6)

The symbols F and B denote the deformation gradient tensor and the left Cauchy-Green defor-
mation tensor, respectively.

2.1 The solid subproblem

Let (ds(x̂, t), ps(x̂, t)) be the displacement and the pressure state variables in the solid do-
main. The solid subproblem consists in determining the variables (ds, ps) as solutions of

ρs
∂2ds

∂t2
−∇ · σσσs(ds, ps)− ρsf s = 0, (x, t) ∈ QΩs

t
, (7)

J(ds)− 1 = 0 , (x̂, t) ∈ QΩ̂s , (8)

σσσs(ds, ps) · ns − σσσf
(
uf , pf

)
· nf = 0 , (x, t) ∈ QΓi

t
, (9)

Bst (ds, ps) = 0 , (x, t) ∈ QΓs
t
, (10)

ds(x̂, 0) = 0 , x̂ ∈ Ω̂s ≡ Ωs
t=0, (11)

∂ds

∂t
(x̂, 0) = 0 , x̂ ∈ Ω̂s ≡ Ωs

t=0. (12)

The first two equations are known as the incompressible elasticity equations. The symbols ρs

and f s denote mass density and body force density for the solid, respectively, and Bst denotes
an abstract boundary operator for the solid external boundary Γst , which may correspond to
Dirichlet, Neumann or other types of boundary conditions.
We remark that the input to this solid subproblem is the stress at the interface coming from
the fluid part while the output is the displacement of the solid, namely ds. The pressure in the
solid ps is an internal variable and it does not have a clear physical meaning. It can be regarded
mathematically as the Lagrange multiplier associated to the solid incompressibility constraint.
For the solid stress tensorσσσs we consider either incompressible Neo-Hookean or incompressible
Mooney-Rivlin, whose Lagrangian description is given for every (x̂, t) ∈ QΩ̂s by

σσσsNH(ds, ps) = −psI + 2C1B(ds) , (13)
σσσsMR(ds, ps) = −psI + 2C1B(ds)− 2C2(B(ds))−1 , (14)
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where the constants C1 and C2 depend on the mechanical properties of the material.
With the given choices of stress tensors, the momentum balance is of second-order in the space
derivatives, and it is also of second order in the time derivative for the displacement unknown.
Therefore we introduce the solid velocity us(x̂, t) to obtain a system of equations containing
only first-order time derivatives. The solid velocity is the velocity at time t of the solid particle
initially at x̂ and it is defined as

us(x̂, t) =
∂X s

t (x̂)

∂t
=
∂ds(x̂, t)

∂t
. (15)

We enforced it over the solid region, including its boundary Γst ∪ Γit.
Since the solid displacement at the interface modifies the fluid domain, we can conclude that
the overall fluid-solid coupling is two-way.

2.2 The fluid subproblem

Let (uf (x, t), pf (x, t)) be the velocity and the pressure state variables in the fluid domain.
The fluid subproblem consists in searching for solutions (uf , pf ) of

ρf
(
∂uf

∂t

∣∣∣∣
X f

+

[
(uf − ∂df

∂t
) · ∇

]
uf
)
−∇ · σσσf (uf , pf )− ρf f f = 0 (x, t) ∈ QΩf

t
, (16)

∇ · uf = 0 , (x, t) ∈ QΩf
t
, (17)

uf = us , (x, t) ∈ QΓi
t
, (18)

Bft (uf , pf ) = 0 , (x, t) ∈ QΓf
t
, (19)

uf (x, 0) = u0(x) , x ∈ Ωf
t=0 ≡ Ω̂f . (20)

The first two equations are referred to as the incompressible Navier-Stokes equations. The
symbols ρf and f f denote mass density and body force density for the fluid, while Bst is an
abstract boundary operator for the fluid boundary, similarly as before. The initial velocity profile
is denoted as u0(x). The fluid stress tensorσσσf for incompressible Newtonian fluid flows is given
as a Eulerian field for every (x, t) ∈ QΩf

t
by

σσσf (uf , pf ) = −pfI + µ(∇uf + (∇uf )T ) , (21)

where µ is the fluid viscosity. Inputs to the fluid subproblem are the displacement of the fluid
domain and the solid displacement on the interface. The former is used for three different
purposes: to compute the position of each point, the ALE time derivative and the fluid domain
velocity. The outputs of this system are both fluid velocity and fluid pressure, which are used to
compute the stress at the interface for the solid subproblem.

2.3 The subproblem for the fluid domain displacement

The subproblem for the fluid domain displacement consists in determining the unknown
df (x̂, t) as a solution of

∇̂ ·
(
k(x̂)(∇̂df + (∇̂df )T )

)
= 0 , (x̂, t) ∈ QΩ̂f , (22)

df = ds , (x̂, t) ∈ QΓ̂i , (23)

Bfdt (df ) = 0 , (x̂, t) ∈ QΓ̂f . (24)
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This subproblem is also referred to as the kinematic equation or the pseudo-solid mapping, as
it defines the arbitrary motion of the fluid domain as another elastic solid. We denote with Bfdt
a general boundary operator which can be chosen arbitrarily depending on the problem at hand
and may also be chosen to depend on time. The function k(x̂) may be chosen to be a piecewise-
constant function discontinuous across the element boundary so that smaller elements in the
mesh can be made stiffer. We use smaller elements in regions where the mesh is expected to
undergo large distortions, in order not to degrade the mesh quality. The expression of k(x̂) we
consider is given by

k(x̂) =
1

Vel(x̂)

, (25)

where Vel is the volume of the mesh element that contains the x coordinate. This subproblem
receives as a sole input the displacement of the fluid-solid interface from the solid part. The
displacement of the fluid domain is the output. This is used to update the ALE mapping X f

t ,
with which the ALE domain velocity and the ALE time derivative are computed in the fluid
subproblem.

2.4 Intracranial stents as porous media

The porous medium is modeled by the addition of a momentum source term to the standard
fluid flow equations. Following [3], we assume a simple homogeneous porous medium and
express the pressure gradient using the Darcy-Forchheimer equation as

−∇p =
(µ
α

u +
1

2
C2ρf‖u‖u

)
, (26)

where α is the permeability, C2 is the inertial resistance factor. These coefficients are related
to the thickness of the porous media wall ∆e. At a macroscopic scale and in one dimension
equation (26) can be averaged to measure the pressure drop between the sides of the stent walls

−∆p

∆e
=
(µ
α
u+

1

2
C2ρfu

2
)
, (27)

or
−∆p = bu+ au2 , (28)

where u is the average velocity, and coefficients a and b depend on the aneurysm geometry
that is considered. Two configurations are usually possible: one in which the stent is placed
parallel to the flow and one in which is placed perpendicularly to the flow (Figure 1). These
two situations are completely different if we consider the blood flow behavior from a fluid
mechanics point of view. In the first geometry, low exchange of blood between the parent artery
and the aneurysm cavity is observed, because the aneurysm flow is created by friction from
the parent artery flow. In the second geometry, the flow hits the aneurysm dome directly, since
the parent artery flow points into the aneurysm, so intense fluidic exchange between the parent
artery and the aneurysm is observed. We use the coefficients a and b provided in [3], which are

a = 1452 and b = 4188 for stents placed parallel to flow direction, (29)
a = 367.08 and b = 281.35 for stents placed perpendicularly to flow direction. (30)

From (27) and (28), the coefficients of the permeability α and the drag factor C2 can conse-
quently be obtained as

C2 =
2a

ρ∆e
and α =

µ

b
∆e . (31)
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We remark that we have two sets of coefficients, one for a stent placed parallel to the flow and
the other for a stent placed perpendicularly.

Figure 1: Flow diverter placement: stent placed parallel to the flow (right) and stent placed perpendicularly to the
flow (left). Figure from [3].

3 MONOLITHIC NEWTON-KRYLOV SOLVER

In a monolithic formulation, we define three unknowns (displacement, velocity and pressure)
in a piecewise fashion at each point of the Eulerian cylinder QΩt as

d =


ds in QΩs

t

di in QΓi
t
,

df in QΩf
t

u =


us in QΩs

t

ui in QΓi
t
,

uf in QΩf
t

p =

{
ps in QΩs

t

pf in QΩf
t
,

enforcing continuity across the fluid-solid interface only for the displacement and the velocity.
The weak formulation of the resulting system is discretized using appropriate finite element
spaces and the corresponding Jacobian matrix is obtained by an exact Newton linearization
implemented by automatic differentiation ([15]). The solution of the linear systems is performed
using a GMRES solver preconditioned by a geometric multigrid algorithm. The smoother is of
modified Richardson type, in turn preconditioned by a restricted additive Schwarz method. The
coarse grid correction problem is dealt with by a direct solver of the monolithic system.

3.1 Structure of the Jacobian

For every nonlinear step k denote the exact Jacobian as J(k). It is important to notice that
the way in which the equations and the unknowns are ordered determines the block structure
of J(k), and different orderings, though equivalent mathematically, can have a significant effect
on the convergence properties and computational time of the solver, especially in the parallel
setting. In this work we followed a field-ordering approach as in [14], but other approaches can
be used. For example, the authors in [6] ordered the equations element by element.
In the Jacobian matrix we use the symbols K for the kinematic equation (15) in the solid and
on the fluid-solid interface, A for the kinematic ALE displacement equation (22) in the fluid, S
for the momentum equation (7) in the solid, I for the momentum equation (9) on the fluid-solid
interface, F for the momentum equation (16) in the fluid, V for the continuity equation (8) in
the solid, W for the continuity equation (17) in the fluid. The Jacobian has the following block
structure, and the order of the variables is listed at the top of the matrix.
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Order of the unknowns:
[
ds di df us ui uf ps pf

]ᵀ
(32)

J(k) =



Sds

ds Sds

di 0 Sds

us Sds

ui 0 Sds

ps 0

Id
i

ds Id
i

di Id
i

df Id
i

us Id
i

ui Id
i

uf Id
i

ps Id
i

pf

0 Adf

di A
df

df 0 0 0 0 0

Kus

ds Kus

di 0 Kus

us Kus

ui 0 0 0

Kui

ds Kui

di 0 Kui

us Kui

ui 0 0 0

0 Fuf

di Fuf

df 0 Fuf

ui Fuf

uf 0 Fuf

pf

V ps

ds V ps

di 0 0 0 0 0 0

0 W pf

di W
pf

df 0 W pf

ui W
pf

uf 0 0



Momentum Solid
Momentum Interface
Kinematic fluid

Kinematic Solid
Kinematic Interface
Momentum Fluid

Continuity Solid
Continuity Fluid

(33)

3.2 Geometric Multigrid preconditioner

As a preconditioner to the outer monolithic GMRES iteration, we consider the action of
geometric multigrid. Consider L levels of triangulations Ωhl with associated mesh size hl ob-
tained recursively by simple midpoint refinement from an original geometrically conforming
coarse triangulation Ωh0 . The finite element spaces associated to each level triangulation Ωhl

are Φ(Ωhl) and Ψ(Ωhl). The prolongation I ll−1 and restriction I l−1
l operators

I ll−1 : Φ(Ωhl−1
)×Φ(Ωhl−1

)×Ψ(Ωhl−1
)→ Φ(Ωhl)×Φ(Ωhl)×Ψ(Ωhl) , (34)

I l−1
l : Φ(Ωhl)×Φ(Ωhl)×Ψ(Ωhl)→ Φ(Ωhl−1

)×Φ(Ωhl−1
)×Ψ(Ωhl−1

) (35)

are defined as

I ll−1v = v, (I l−1
l w,v) = (w, I ll−1v) (36)

for all v ∈ Φ(Ωhl−1
) × Φ(Ωhl−1

) × Ψ(Ωhl−1
) and w ∈ Φ(Ωhl) × Φ(Ωhl) × Ψ(Ωhl). The

prolongation is the natural injection from the coarse to the fine space, while the restriction
operator I l−1

l is the adjoint of I ll−1 with respect to the L2 inner product. Once finite element
bases are chosen, the matrix representation of the prolongation and restriction operators will be
denoted with the boldface notations Ill−1 and Il−1

l . Clearly, these matrix representations depend
on the block row ordering of the Jacobian (33). In fact, the Jacobian matrices at each level Jl
are computed as

Jl−1 = Il−1
l JlI

l
l−1 , (37)

so that a different Jacobian structure affects the structure of Il−1
l and Ill−1.

The block structures of the prolongation and restriction operators are

Il−1
l =



Rds

ds 0 0 0 0 0 0 0

Rdi

ds Rdi

di 0 0 0 Rdi

df 0 0

0 0 Rdf

df 0 0 0 0 0

0 0 0 Rus

us 0 0 0 0

0 0 0 Rui

us Rui

ui 0 0 0

0 0 0 0 0 Ruf

uf 0 0

0 0 0 0 0 0 Rps

ps 0

0 0 0 0 0 0 0 Rpf

pf


, (38)
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Ill−1 =



Pds

ds Pdi

ds 0 0 0 0 0 0

0 Pdi

di 0 0 0 0 0 0

0 Pdi

df P
df

df 0 0 0 0 0

0 0 0 Pus

us Pui

us 0 0 0

0 0 0 0 Pui

ui 0 0 0

0 0 0 0 Pui

uf P
uf

uf 0 0

0 0 0 0 0 0 P ps

ps 0

0 0 0 0 0 0 0 P pf

pf


. (39)

Note that in Eq. (38) the entry (2, 3) has been moved to (2, 6), and the entry (3, 2) has been
zeroed. In each sub-block the restriction operator is constructed in the usual way by evaluating
coarse shape functions at fine nodes, while the prolongator is the transpose of the restriction.

3.3 Richardson-Schwarz smoother

Here we define the smoother of the multigrid algorithm. The coupled FSI system is treated
in a monolithic manner at all stages, except in the smoothing process. We first partition the
whole domain into the fluid and solid subregions, and then we further divide each subregion
into smaller non-overlapping blocks Ωk, k = 1, ..., N . On each subdomain Ωk we construct a
subdomain preconditioner Bk, which is a restriction of the Jacobian matrix J, that is, it con-
tains entries from J corresponding to the degrees of freedom contained in the corresponding
subdomain Ωk. In each block the equations to be solved are taken following a Vanka-type
strategy. The DOFs associated to an element consist of displacement, velocity and pressure.
The exchange of information between blocks is guaranteed by the fact that the support of the
test function associated to the displacement and velocity DOFs extends to the neighboring ele-
ments. In a restricted additive Schwarz algorithm ([6]) the overlap is initially used to provide
information to the subdomain solver, but then the result of that computation is discarded in the
overlap region. The restricted version of the additive Schwarz (ASM) preconditioner used in
the Richardson scheme for the FSI Jacobian system is

B−1 =
N∑

k=1

(R0
k)TB−1k (Rδ

k) . (40)

With Rk we indicate a restriction matrix which maps the global vector of degrees of freedom
to those belonging to the subdomain Ωk. Furthermore, R0

k is a restriction matrix that does not
include the overlap while Rδ

k does.
Various inexact additive Schwarz preconditioners can be constructed by replacing the Bk ma-
trices with ones that are convenient or inexpensive to compute.

4 FSI BENCHMARKING: 2D SIMULATIONS

The following 2D simulations of a cerebral aneurysm are based on a 2D hemodynamics
model problem from [27]. The geometry consists of a channel (lumen of the artery) of diameter
2mm with a wall thickness of 0.25mm (Figure 2). The aneurysm wall is typically thinner than
that of the healthy artery part, therefore the aneurysm has a wall thickness of 0.125mm. We
start by considering a mesh without stents, and then move to three cases where such devices
are included. In the second and third configuration, stents are represented as in [27], that is as
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Figure 2: 2D aneurysm geometry. Figure from [27]

circular shape, placed on the neck of the aneurysm. Stents are flexible, self-expanding porous
tubular meshes made of stainless steel or other alloys and are characterized by very thin wires
(30 − 100µm). In 2D, flow diverters can be simplified as cutplanes from 3D configurations,
so as circular shapes. We conclude our simulations with a case where a stent is modeled as a
porous medium.
Figure 3 shows the four configurations we described. The difference between the second and
third geometry is in the number of struts that compose the stent, to be precise five and eleven
struts, respectively. In both cases, the wires (circular shapes) have a diameter of approximately
60µm. In the last configuration, the porous medium strip placed on the neck of the aneurysm
has a width of approximately 60µm as well (∆e = 60µm). Since the stent is placed parallel to
the flow, we know from section 2.4 that the coefficients used to represent the pressure drop in
the porous media approach are a = 1452 and b = 4188.
In all cases, hybrid meshes are employed. Quads are mainly used to mesh the channel and the
arterial wall of the geometry, while triangles are employed in the aneurysm bulge.

4.1 Mechanical properties and boundary conditions

Although the blood is known to be non-Newtonian in general, several studies, like [7], [11],
[31], [26], [19], [27] and [20], assume it to be Newtonian, as we do in this paper. Cebral, et
al. show in [9] that, for cerebral aneurysms, treatment of blood as Newtonian does not alter
the computational results compared to treating it as non-Newtonian. The density and viscos-
ity of the blood are set to 1035 kg/m3 and 3.5 × 10−3 Pa · s, respectively. Parameter values
for the elastic artery in the described model are as follows: the density of the arterial wall is
1120 kg/m3, the Young modulus and Poissons ratio are set to 1.0MPa and 0.5, respectively.
In the simulation concerning the porous medium, we considered its width (thickness in 3D) to
be 60µm. With these parameters, the coefficients of the permeability α and the drag factor C2

are

α = 5.014 · 10−11 and C2 = 4.676 · 104 .

Hence, we expect a high resistance and a very low permeability.
The inflow boundary conditions are specified as a pulsatile velocity profile moving from the
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Figure 3: 2D Configurations: no stents (top left), stent with five struts (top right), stent with eleven struts (bottom
left), stent modeled as a porous medium (bottom right).

right to the left part of the channel prescribed [27]

vf (t, 0, y) = vf (0, y)(1 + 0.75 sin(2πt)) , (41)

where vf (0, y) is defined as parabolic inflow, namely

vf (0, y) = 0.05 (y − 6)(y − 8). (42)

Pressure conditions representing the resistance due to the peripheral arterial network are not
taken into account in this 2D model, therefore p = 0 has been imposed as outflow condition at
the lower left part of the artery. The no-slip condition is prescribed for the fluid on the other
boundary parts. The boundary displacements at the inlet and outlet of the artery are set to zero.

4.2 Numerical results

In all the four simulations we performed, we considered the same physical parameters and
boundary conditions. Figures 4 and 5 show the changes of volume and pressure in the aneurysm
dome for all four cases. Pictures clearly show the given pulsatile sinusoidal behavior. In all three
stent cases volume and pressure have been reduced compared with the non-stent case, which
is what we expected. The five struts configuration (blue curve) is the one that allows a greater
decrease in both volume and pressure. We see that doubling the number of struts (black curve)
the maximum value reached by the volume increases by 50% compared to the previous case,
while the maximum value for the pressure increases by 33%. This is suggesting that for a given
aneurysm geometry, stents with different designs may give different results. In the past years,
stents optimization techniques have already been investigated. In [2] stent design based on the
combination of Lattice Boltzmann flow simulations and Simulated Annealing optimization was
developed for a 2D ideal aneurysm geometry. In [33] two clinical cases have been investigated
and adjustments on the stent structure and porosity are suggested to improve the fluid diverter
treatment outcomes. Figure 6 shows the pressure distribution at t = 2.156 s for the 5 and 11
struts configurations. The two distributions are very different. For the 5 struts geometry, the
highest pressure point is located on the aneurysm neck, but in the aneurysm dome the pressure
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Figure 4: 2D Simulations: Difference in Volume.
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Figure 5: 2D Simulations: Average Pressure.

Figure 6: 2D Configurations: pressure distribution at t = 2.156 s for the five struts stent configuration (right),
pressure distribution at t = 2.156 s for the eleven struts stents configuration (left).
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Figure 7: 2D Simulations: Average Velocity.

is much lower. For the 11 struts configuration, we have that the pressure distribution is much
more uniform. The entire aneurysm dome is uniformly subjected to the same pressure value.

We also observe an analogy between the eleven struts configuration and the porous medium
case (red and black curves). In Figure 4 the curves even overlap for the most part. This analogy
is also found in the average velocities, which are displaced in Figure 7 . For both configurations,
the average velocities are quite similar and much lower than the velocities obtained in the no
stents and five struts cases. The similarity between the porous medium case and the 11 struts
configuration shows the validity of the porous medium approach. Similarly to what we observed
in the previous graphs, the five struts configuration keeps behave differently from the 11 strut
and the porous medium configurations. The velocity distribution in the aneurysm dome after
placing a stent with five wires is comparable to the one obtained without any stent. Looking

Figure 8: Magnitude Velocity at t = 5.25 s for the four 2D Configurations: no stents (top left), stent with five
struts (top right), stent with eleven struts (bottom left), stent modeled as a porous medium (bottom right).
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carefully at the flow behavior, Figure 8 shows the velocity magnitude at the aneurysm neck and
dome for all four configurations. Due to the different flow rate into the aneurysm, significant
local differences can be observed. As we pointed out, the porous medium case resembles the
real stent configuration with 11 wires.

5 FSI BENCHMARKING: 3D SIMULATIONS

The cerebral aneurysm considered in this section (Figure 9) is a 3D extension of the 2D
geometry analyzed above. To make the shape more realistic, changes have been made to the
aneurysm dome, based on a real aneurysm view proposed in [27]. We assumed the aneurism
wall to be uniform and equal to 0.25mm. We start by considering a mesh without stents,
and then move to a case where such devices are included. In this work, we decided to model
the flow diverter as a porous medium. For 3D geometries, flow diverters are very difficult
to simulate because the large difference of scale between the size of the flow diverters struts
and the aneurysm (up to 30mm) creates difficulties in the mesh process and, consequently,
the simulation accuracy may be compromised. To resolve this issue, Augsburger et al. (2011)
introduced the concept of employing porous media to simulate a stent ([3]). By placing a porous
medium in the aneurysm neck, a unified mesh can be generated, which reduces the associated
computational load. In our configuration, the porous medium disk placed on the neck of the
aneurysm (Figure 9) has a thickness of approximately 112µm (∆e = 112µm).
In both our geometries (with and without stents), hybrid meshes are employed. Wedges are
needed to mesh the artery lumen, and hexes are used for the arterial wall. Tets are mainly
employed in the aneurysm dome.

5.1 Mechanical properties and boundary conditions

In these 3D simulations, for the blood flow we are using the same physical parameters used
in the 2D cases. For the elastic artery wall, we decided to consider a smaller value for the Young
modulus. Young modulus parameters usually vary from 0.4 to 10MPa, but to clearly see the
artery and the aneurysm pulse we considered 0.012MPa as our Young modulus value.
In the simulation concerning the porous medium, we considered its thickness to be 112µm.
With this value, the coefficients of the permeability α and the drag factor C2 are

Figure 9: 3D Configurations: geometry with mesh (left), section of the 3D geometry to show the porous medium
disk that simulates the intracranial stent.
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α = 9.360 · 10−11 and C2 = 2.505 · 104 .

At the inlet we specified a pulsatile flow with a period of 0.71 s. The flow rate was set to a
pulsatile velocity profile described by the Womersley formulation ([32]):
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Figure 10: 3D Simulations: Velocity Profile.
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Here r represents the cylindrical coordinate, R denotes the radius of the inlet cross section and
t is time. J0 and J1 are Bessel functions of the first kind of order 0 and 1. We consider

αn = R

√
nω

ν
, α = R

√
ω

ν
(44)

where ω is based on one cardiac cycle (= 0.71 s) and ν indicates the kinematic viscosity. The
non-dimensional parameter α is known as the Womersley number. The coefficients Bn are
derived in reference to the chosen velocity waveform. Figure 10 shows the velocity profile v
considered in our simulations. At the outlet, pressure conditions representing the resistance due
to the peripheral arterial network are not taken into account, therefore p = 0 has been imposed
as outflow condition at the lower left part of the artery. The boundary displacements at the inlet
and outlet of the artery are set to zero.

5.2 Numerical results

In both simulations we performed, we considered the same physical parameters and bound-
ary conditions. Figures 11 and 12 show the changes of volume and pressure in the aneurysm
dome for the considered cases. Pictures show the waveform we gave in the Womersley formu-
lation. We observe that, for E = 0.012MPa, both volume and pressure have been reduced
once the porous medium stent has been applied, as for the 2D case.
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Figure 11: 3D Simulations: Relative Difference in Volume.
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Figure 12: 3D Simulations: Average Pressure.

Figure 13: Magnitude Velocity at t = 1.161 s for the 3D Configurations: no stents (left), porous medium approach
(right)
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The velocity magnitudes at the aneurysm neck and dome at the acceleration phase (t =
1.161 s) are shown in Figure 13. As we observed for the 2D setting, the flow rate changes after
the porous medium placement causing a reduction of the velocity magnitude on the aneurysm
neck and dome. Therefore the porous medium approach performs well also in a FSI environ-
ment.

6 CONCLUSIONS

In this paper we focused on the numerical simulation of FSI problems regarding artery
aneurysms. We presented a monolithic ALE formulation assuming the fluid flow and the hyper-
elastic material to incompressible. We described the Newton-Krylov solver we employed where
we considered the use of geometric multigrid preconditioners. We described the structure of the
geometric multigrid operators, for which modified Richardson smoothers were chosen, precon-
ditioned by an additive Schwarz algorithm of overlapping restricted type. We applied the pre-
sented numerical techniques to FSI benchmarking settings which allowed the validation of our
approach for hemodynamics problems. The configurations, both two and three-dimensional,
consisted of artery aneurysms where hybrid meshes are employed. The numerical results con-
firmed the stability and numerical efficiency of the FSI algorithm.
Our solver has been implemented in the open-source C++ Femus library using the GMRES
solver and the geometric multigrid preconditioner interface implemented in the PETSc toolkit
[5]. Looking at parallelization, PETSc offers a parallel implementation of the GMRES linear
solver, so that the parallelization work for the user is left to the multigrid preconditioner part.
For the direct solver, we employed the implementation of the MUMPS package [1] which in-
cludes a serial and a parallel version. For the smoother, we adopt an ASM- preconditioned
Richardson method for which the parallelization is based on the domain decomposition.
From our simulations, we observe that the modelization of a flow diverter as a porous medium
is successful in a FSI environment. Both in the 2D and 3D case, the aneurysm volume, pressure
and velocity decrease once the porous medium stent has been placed. In the 2D simulations,
the similarity between this type of modeling and the 11 struts configuration shows the validity
of the porous medium approach. The different results obtained with the 5 and 11 struts config-
urations highlight the prominent design dependence on flow diverters performances. We also
tested the porous medium approach in a 3D configuration and verified its efficiency in a FSI
environment.
In our future work, we will further investigate how to choose the porosity coefficients for any
general stent. A study about how to improve the pressure drop determination has already been
done ([19]). Moreover, we are going to apply the porous medium approach to simulate the
effect of a stent-graft in an abdominal aortic aneurysm.
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