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Abstract. This paper reports on the results of an ongoing Research Project aimed at 
computing the risk of collapse in new buildings conforming to the Italian Seismic Design 
Code. Companion papers describe the overall Research Project, funded by the Italian Civil 
Protection Department (DPC), its different application areas (reinforced concrete, masonry, 
steel buildings, etc), the overall seismic risk calculation procedure and the ground motion se-
lection process followed to identify the recorded ground motions used for the multi-stripe 
analyses for ten different ground motion intensities. 

This papers describes the multivariate statistical model of the structure-related uncertainty 
developed with reference to reinforced concrete buildings, describing the variability of mate-
rial properties as well as model error terms of the adopted response models for both RC 
members and masonry infills. The paper describes also the efficient sampling procedure 
adopted and discusses the results of the nonlinear analyses, both static and dynamic, carried 
out under different assumptions on the correlation structure for the selected reinforced con-
crete buildings (namely 6- and 9-storey moment resisting frame). 
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1 INTRODUCTION  

As described in the companion papers from the RINTC project, and in particular in [9][1], 
three sets of 3, 6 and 9-story moment-resisting RC frame buildings were designed to comply 
with the current Eurocode-aligned national structural design code and were subjected to seis-
mic risk assessment via multiple-stripe analysis with conditional-spectrum selected motions. 
The buildings are all intended for residential use and are characterized by regularity in plan 
and elevation, with identical floor plans (floor beams and floor slabs), the only differences 
being in the column dimensions and reinforcement. Details about the geometry, loads, design 
process, inelastic modeling strategy and analyses results can be found in [1]. 

Analyses have been carried out for all cases accounting only for uncertainties on the action 
side, in terms of seismic hazard curve and ground-motion record-to-record variability. This 
paper describes the sub-set of analyses carried out by the authors to gauge the effect on the 
results of structure-related uncertainty, by which it is collectively indicated the variability of 
the structural materials as well as the epistemic uncertainty in the response models (model 
uncertainty). This exploration has been so far limited to the only site of Naples, out of the five 
considered in the project, soil category C, and only for the 6- and 9-storey buildings. For 
length reasons, this paper presents the 6-story building configurations only. 

2 METHODOLOGY 

2.1 Joint distribution model of the selected random vector 

As it regards model uncertainty, two models are used in the analysis of the selected RC 
buildings: the IMK response model, for the RC members, and an equivalent strut (concentric) 
model for the infills. The former, as anticipated, is characterized by a total of five parameters. 
Marginal predictive equations have been derived for these parameters by Haselton et al. The 
equations are based on the assumption that parameters have a lognormal distribution, and 
come in the form of an equation for the median, and a dispersion value. The model is margin-
al in the sense that no measure of statistical dependence among the parameters is provided. In 
the analyses reported in the previous sections, for all configurations, sites and soil conditions, 
median values have been used. In this paper, for the site of Naples and soil condition C, the 
model parameters are modelled as lognormal variables based on Haselton et al equations, with 
the exception of the ultimate to yield moment ratio, that is taken deterministic equal to the 
median prediction. Two additional lognormal variables are used to describe material variabil-
ity in RC members, and in particular concrete strength fc and steel yield stress fy, thus, in sum, 
4+2=6 random variables are used for the response model of RC members (see Figure 1). 

 
Figure 1: Trilinear IMK model used for hinges in RC member modeling: identification of random variables. 
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The parameters of the infill model are five, peak strength, cracking, peak and residual 
strength displacements, and the strength reduction factor for openings. Thus, five random var-
iables are needed for each equivalent strut. 

In order to perform the analysis with account of the above uncertainties, two choices have 
been made. First, it has been chosen not to consider all possible combinations of ground mo-
tions and structure-related variables values, i.e. as in a so-called “extended IDA” framework. 
This has been judged computationally too onerous for the marginal increment in accuracy in 
the determination of the response parameters and final risk values. Instead, a one-to-one asso-
ciation of sets (realizations or samples) of structural parameters’ values and ground motions 
has been done. This preserves the total number of inelastic response history analyses at 200. 
The second choice regards the structure of the joint distribution of the random variables, 
which, in the absence of a joint predictive model, needs to be established based on expert 
judgement. It has been assumed what follows: 

• Parameters within a beam or column member have a unique value, i.e. are perfectly 
correlated (joint lognormality is assumed based on marginal one, and as such, statisti-
cal dependence is completely described by a correlation model). This means that val-
ues of the IMK parameters and of fc and fy are the same in the two hinges of the same 
member; 

• Similarly, for each infill panel, both equivalent struts are assigned a single set of pa-
rameters’ values; 

• For inter-member correlation, a simplified model has been adopted, whereby correla-
tion is specified within each floor and amongst different floors, independently for each 
random variable, and independently of floor-to-floor distance (it is the same between 
roof and first floor, as it is, e.g., between second and third floor). This dependence 
structure is qualitatively justified based on the floor-wise erection of the buildings. 

Under the above assumptions what remains to be established are the correlation values 
among different variables within each member, and the inter-member values, i.e. the intra-
floor (superscript “sf” for “same floor”) and inter-floor (superscript “df” for “different floor”) 
values. While, as already said, Haselton et al [5] do not provide values for the intra-member 
correlations, and these are thus assumed based on judgement, at least for the displacement 
thresholds, these have been evaluated on the Sassun et al [11] experimental basis for the 
equivalent strut infill panel model. This is shown in Figure 2. 

 

 
Figure 2: Diagonal strut model: dispersion (red for displacement, blue for forces) and correlation coefficients 

(green), assessed from the Sassun et al data base. Note that force for both full panels and panels with openings 
are normalized to full panel strength Fp. 
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Table 1 and Table 2 summarize the logarithmic standard deviations (dispersions), intra-
member, intra-floor and inter-floor correlation coefficients, for the RC members and the infill 
panels (IP), respectively. Boldface values are based on experimental evidence, either provided 
by Haselton et al (Table 1) or assessed on purpose for this work (Table 2). The correlation and 
dispersion values for the IP equivalent strut model reported in the table are rounded with re-
spect to those in Figure 2. The other assumed values only reflect the commonsense fact that, 
both in RC and masonry, increasing strength goes along with decreasing ductility. 

 

Variable ln  , cx f  , yx f  
,x   

40,x k  , ux    , cx    
,

sf
x x  ,

df
x x  

cf  0.20 1.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 

yf  0.10 0.0 1.0 0.0 0.0 0.0 0.0 0.9 0.9 

  0.50 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.8 

40k  0.38 0.0 0.0 0.0 1.0 -0.5 -0.5 0.8 0.8 

u  0.61 0.0 0.0 0.0 -0.5 1.0 0.8 0.8 0.8 

c  0.72 0.0 0.0 0.0 -0.5 0.8 1.0 0.8 0.8 

Table 1: Dispersion and intra-member correlation coefficients for the RC member model (values in bold 
typeface are based on data, the remaining ones are based on expert judgement). 

Variable ln  , px f  , crx u  , px u  , rx u  , opx   
,

sf
x x  ,

df
x x  

pf   0.40 1.0 -0.5 -0.5 -0.5 0.0 0.8 0.8 

cru  0.50 -0.5 1.0 0.7 0.7 0.0 0.8 0.8 

pu  0.50 -0.5 0.7 1.0 0.7 0.0 0.8 0.8 

ru  0.50 -0.5 0.7 0.7 1.0 0.0 0.8 0.8 

op  0.25 0.0 0.0 0.0 0.0 1.0 0.8 0.8 

Table 2: Dispersion and intra-member correlation coefficients for the infill model (values in bold typeface are 
based on data, the remaining ones are based on expert judgement). 

The final random vector, based on the previous assumptions, is joint lognormal, with me-
dian specified in [1] and covariance matrix:  
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where: 

1 2

   
e e
RC RC i i

cC  (2) 

1 2

   
e e
IP IP i i

cC  (3) 

are the 6x6 and 5x5 intra-element covariance matrices of RC members and infill panels, re-
spectively, given by the product C = DRD of the respective correlation matrices R = [] (col-
umns 3 to 8 in Table 1 and 3 to 7 of Table 2, respectively) and the respective diagonal 
matrices D = [ln] of logarithmic standard deviations (column 2 in both Table 1 and Table 2). 
The intra-floor (superscript “sf” for “same floor”) and inter-floor (superscript “df” for “differ-
ent floor”) covariance matrices are given by: 

1 1 2 2
1 2 1 2

        
sf sf e sf sf
RC RC RC i i i ii i i i

c cC  (4) 

1 1 2 2
1 2 1 2

        
df df e df df
RC RC RC i i i ii i i i

c cC  (5) 

and similarly for the infill panels. 

2.2 Efficient simulation of random samples 

The joint lognormal vector of random variables required to describe structure-related un-
certainty according to the previous section: 

            1,1 1,1 ,1 ,1 , ,      
T T T T T TT RC IP RC IP RC IP

j j j k j ky y y y y y y  (6) 

has a size  6 5 1RC IPn n   that easily reaches a few thousands of components (the indices j 

and k span the elements and floors, respectively). While direct sampling is still feasible ac-
cording to the expression: 

 lnexp    yy x DLu  (7) 

with    ln ˆln    y x y x , R =LL’ and u is a vector of independent standard Gaussian varia-

bles, a more effective procedure has been devised, which uses the sums of independently gen-
erated short vectors (either  6 1  or 5 1 , for RC members and infill panels, respectively) to 
reproduce the target covariance structure. 

The l-th realization of the above vector is obtained as: 

       ˆ ˆexp exp    
j k ljkl jkl jkl jkl x x y y z zy y x ε y x c ε c ε c ε  (8) 

where the symbol   denotes the Hadamard or component-wise product of matrices, and 
, , ,

j k ljkl x y zε ε ε ε  are zero mean independent identically distributed Gaussian vectors of size 

6 1  or 5 1 , for RC members and infill panels, respectively, with covariance matrix either 
equal to e

RCC  or e
IPC . Not the same number of vectors is sampled for each type: for each simu-

lation run (one value of index l), RC IPn n  vectors 
jxε , floorsn  vectors 

kyε and one vector 
lzε are 
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sampled. By calibrating the matrices , ,x y zc c c  the correct overall covariance structure is ob-

tained. In particular, setting the diagonal matrices ,y zc c  to: 
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it can be easily shown that: 

   
1 1 2 2 1 1 1 2 2 2 1 1 2 2

1 2

cov , cov ,          
T e e df df

j k l j k l z RC z i j k l i j k l RC i i i ii i
cε ε 0 0 c C c  (11) 

and: 

   
1 2 1 1 2 2 1 1 2 2

1 2

cov , cov ,          
T e T e e sf sf

j kl j kl y RC y z RC z i j kl i j kl RC i i i ii i
cε ε 0 c C c c C c

 
(12) 

which coincide with equations XX and YY above. Finally, since the following condition must 
hold true: 

 cov ,    T e T e T e e
jkl jkl x RC x y RC y z RC z RCε ε c C c c C c c C c C  (13) 

the last matrix is obtained as: 

 T T
xc D CWC D  (14) 

where    e T e T e
RC y RC y z RC zW C c C c c C c  must be definite positive for the covariance matric to 

be a valid one (a condition that is satisfied by using the inter-floor and intra-floor correlation 
values indicated in the previous tables). 

3 RESULTS 

3.1 Nonlinear static analysis 

Nonlinear static analysis (NLSA) is employed to gain sensitivity on the model presented in 
the previous section. In particular, NLSAs have been performed in both X and Y directions, 
for 20 samples drawn from: 

• A joint distribution with zero inter-member correlation 
• A joint distribution with perfect inter-member correlation 
• The joint distribution described in the previous section 

 
Results are reported, with reference to the BF configuration only, for the sake of illustra-

tion, in the next Figure 3, where each row contains results for one of the three distribution 
models above, in the same top to bottom order, while the left and right column present the re-
sults for the X and Y direction, respectively. Similar results are obtained also for the IF and 
PF configurations. 
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Figure 3: NLSA results (first mode distribution) in X (left) and Y (right) directions, BF configuration, under 
the three inter-member correlation assumptions (“zero”, “perfect” and “assumed”, from top to bottom). 
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Without entering into the details, the thin lines represent individual NLSA runs, and green, 
blue and red dots mark the yield, peak and collapse (50% force drop according to the adopted 
simplified global collapse criterion, see [1]) points on the (not shown, for clarity) trilinear fit 
to the curve. On the axes, lognormal PDFs fitted to both the displacement and force values 
obtained from these cloud of points are reported, and each plot is also completed by numerical 
values of median and dispersion with the same color code. A bold line with changing color 
denotes the capacity curve obtained with the median model. 

The results allow to appreciate how the relatively high intra-floor and inter-floor correla-
tion used leads to a model that is similar to a perfect correlation model. Also, the median 
model is providing in the last two cases an approximation of the median response of the anal-
yses with consideration of structure-related uncertainties, while it is an upper bound for the 
“zero” inter-member correlation case. The latter is consistent and easily explained, because 
with high correlation, variations towards larger or smaller values (of strength, deformability, 
etc) happen to most members together, resulting in larger global variability reflected in the 
capacity curve. With independent members, it is highly likely instead that in each simulation 
one or more weak members are sampled that condition response causing a premature failure. 

 

  

  
Figure 4: NLSA results (first mode distribution) in X (top) and Y (bottom) directions, BF configuration, un-

der the assumed inter-member correlation assumption: effect of sample size on collapse capacity (20 vs 200 
samples, left and right, respectively). 
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Finally, Figure 4 shows a comparison of the results (fitted distribution and parameters) ob-
tained with 20 or 200 samples, again only for the BF configuration for illustration’s sake. The 
figure confirms that associating one-to-one a realization of the structure to each motion in a 
stripe, i.e. using 20 models, and using the same 20 random models for all the stripes (switch-
ing only the motion), provides a reasonable approximation. 

3.2 Nonlinear dynamic analysis 

Figure 5 reports the D/C ratios (in terms of top floor displacement) for the BF configura-
tion, for the X (left) and Y (right) directions, for both limit states. In particular, collapse is in 
the top row and damage is in the bottom one. The plots report both the individual run results, 
with markers aligned at each stripe intensity level, as well as the fitted conditional distribu-
tions. Blue markers and shaded PDFs are those for the median model analyses ([1]), shown 
for reference, while red denotes the results accounting for structure-related uncertainty. Figure 
6 reports similar results for the IF configuration. 

  

  
 

Figure 5: D/C ratios for the BF configuration (6-Story building in Naples, soil C): top row, collapse limit 
state, damage limit state in the bottom row, X direction in the left column, Y direction in the right column. Blue 
markers and light blue shade indicate individual run results and lognormal fit for the analyses with the median 
model, Red markers and line indicate corresponding results for the analysis with structure-related uncertainty. 
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Figure 6: D/C ratios for the IF configuration (6-Story building in Naples, soil C): top row, collapse limit state, 

damage limit state in the bottom row, X direction in the left column, Y direction in the right column. Blue mark-
ers and light blue shade indicate individual run results and lognormal fit for the analyses with the median model, 

Red markers and line indicate corresponding results for the analysis with structure-related uncertainty.  

Results confirm that again the collapse D/C ratios are well below 1.0 and those for the 
Damage Limit State are way above 1.0. It is reminded that the latter is defined as in NTC2008 
by maximum InterStory Drift Ratios (IDRs) of 0.003 and 0.005, if the model includes the in-
fills, as in the IF and PF cases, or does not include them, as in the Bare Frame case, respec-
tively. Even though the order of magnitude does not change, as expected, the dispersion of the 
D/C ratios is quite heavily affected by the additional structure-related uncertainty, leading to a 
marked increase in the risk [9]. A better assessment of the induced change in terms of re-
sponse can be obtained by inspecting the plots in Figure 7 (collapse limit state) and Figure 8 
(damage limit state). The figures report, for all configurations (BF, IF and PF, from left to 
right), the cloud of D/C points with abscissa equal to the D/C ratio without structure-related 
uncertainty and the ordinate equal to the D/C ratio with this uncertainty. In all cases the medi-
an is only slightly affected, with the possible exception of the IF configuration at collapse, 
and dispersion are quite large, ranging from 0.3 (BF) to 0.6 (IF and PF, where infill panels 
also play a role and total uncertainty increases) at collapse, and from 0.2 (BF) to 0.4 (IF) at 
the damage limit state. 
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Figure 7: Collapse Limit State: D/C ratios of model with structure-related uncertainty versus model without it, 

for the same motion and for all configurations (BF, IF and PF). 

 
Figure 8: Damage Limit State: D/C ratios of model with structure-related uncertainty versus model without it, 

for the same motion and for all configurations (BF, IF and PF). 

4 CONCLUSIONS 

This paper is part of a set of papers presenting the results of an ongoing project on compu-
ting the implicit risk of seismic collapse (and damage) of buildings designed according to the 
current Italian design code NTC2008. This paper focuses on a set of 6-story RC buildings de-
signed in one of the five sites of the project (Naples) and focuses on the assessment of the in-
fluence of structure-related uncertainty on the probabilistic seismic demand model established 
by nonlinear dynamic analysis. The joint distribution model adopted to describe this addition-
al source of uncertainty (with respect to the action-related one, described through hazard 
curve and recorded ground motions) is presented and discussed. An efficient sampling proce-
dure is also presented. The final results of the dynamic analyses confirm that this source of 
uncertainty is relevant and causes generally minor variations of the median response coupled 
with non-negligible increases of dispersion. The results is mostly due to the still relatively 
high model uncertainty associated with currently available response models in use. 
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