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Abstract. In the general case of non-proportionally damped structural model the associated 

quadratic eigenvalue problem leads to complex eigenvalues and eigenvectors. The modal de-

composition of the equations of motion is usually to be performed in complex space.  

In this paper are presented possible variants of a general method [2] - [5] for modal trans-

formation of damped multi-degree-of-freedom-systems (MDOFS) with non-modal symmetric 

damping matrix. The assembly of a modal transformation matrix in real space is based either 

on the conjugated complex left eigenvectors, or on the right eigenvectors, or on a combina-

tion of the left and right eigenvectors of the system. The eigenvector normalization can be 

performed with respect to the general mass or to the general stiffness matrix. The equations of 

motion are stated in state-space formulation. The developed real-space modal transformation 

matrix is always built by a combination of two complex transformations. Analytically expres-

sions for all presented variants of the modal transformation basis are developed be the aid of 

computer algebra software. Those formulas operate with the real and the imaginary parts of 

the eigenvectors and the associated eigenvalues. All variants of the suggested modal proce-

dure retain the common advantages of the classic modal decomposition of the equations of 

motion. 

The vibrations of a rotor blade of a wind turbine subjected to wind thrust loads have been 

calculated in two variants to demonstrate the performance of the presented modal analysis 

procedures. The initial computation of the complex eigenvalue solution of the FEM beam 

model and all subsequent computations are done by the aid of computer algebra software. 

The suggested procedures can be applied in structural systems containing different damping 

and energy-loss mechanism in various parts of the structure, described by non-proportional 

damping matrix. 
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1 INTRODUCTION 

 

The classic modal transformation of the equations of motion of multi-degree-of-freedom-

systems (MDOFS) is applied to systems without damping. Fully real free frequencies and ei-

genvectors are the solution of the associated linear eigenvalue problem. The inclusion of 

damping in the equations of MDOFS leads to a quadratic eigenvalue problem with corre-

sponding complex conjugate pairs of eigenvalues and eigenvectors. The modal decomposition 

of the equations has to be performed in complex space.  

The damping can be account for in a simple way by use of the Rayleigh damping assump-

tion – this leads to proportional damping matrix. In this special case the real eigenvectors of 

the undamped system are also eigenvectors of the system with proportional damping. The cor-

responding modal matrix, to be used for modal decomposition of the equations of motion, is 

fully real. In the general case of viscous damping, represented by non-proportional symmetric 

damping matrix, we have to deal with complex conjugate pairs of eigenvectors. This case is 

considered in the present paper.  

 There are presented three variants of a new modal transformation procedure for structural 

models with non-proportional symmetric damping matrix. The first one, briefly outlined in 

Sec. 2, is based on the complex right eigenvectors, normalized with respect to the mass matrix. 

A more detailed presentation of this procedure is given in [2] – [4]. The second variant, de-

veloped in a similar way to the first one, operates with the complex right eigenvectors too, but 

they are normalized with respect to the stiffness matrix. The procedure is described in details 

in Sec. 3.  

In Sec. 4 is presented the third variant of the suggested procedure. Here we operate with 

both the right and the left complex eigenvectors of the MDOFS, the normalization is with re-

spect to the stiffness matrix. 

The main subject in all variants is to avoid the modal decomposition in complex arithmetic 

by assembling of a new modal transformation matrix in real space, belonging to the “state 

space” form of the equations of motions. The columns of the matrix are developed analytical-

ly by a combination of two complex transformations. Considering the proportional damping 

case which is also included, an analytical formula for the constant phase lag/lead of free vi-

brations is derived in both procedures presented in Sec. 2 and Sec. 3. 

In all variants of the suggested procedure the complex eigenvectors and eigenvalues of the 

structural model should be computed first. In the presented example in Sec. 5 – vibration of a 

rotor blade of a wind generator - computer algebra software was applied to solve the eigen-

value problem. In real life applications of the presented method to high dimensional problems 

it must be available a reliable eigenmode solver for large complex eigenvalue computations. 

There are many literature references for large scaled problems with various solution strategies, 

see [10] – [12]. The author has used an implicitly restarted Arnoldi/Lanczos method [11], [12] 

to solve the complex eigenvalue problem in an application of the method to a fluid-structure-

foundation interaction problem, see more details in [1] - [3].  

In Sec. 5 the proposed modal analysis method, presented in Section 4, has been applied to 

a rotor blade beam structure with 54 DOF. The numerical example demonstrates the perfor-

mance of the method for the general case of non-proportional damping. In this case the damp-

ing matrix of the system contains a stiffness proportional (Rayleigh) damping and 

aerodynamic (non-proportional) damping parts. In the second variant of the solution – with 

proportional damping matrix, the formula for the constant phase of the resonance modes is 

verified numerically. 
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1.1 Free vibrations of a viscously damped system 

The equations of motion of a damped MDOFS are 

 

            𝐌𝐕̈ + 𝐃𝐕̇ + 𝐊𝐕 = 𝐩(𝑡)                                                                     (1.1) 

 

where M, D and K are, respectively the (n x n) mass, damping and stiffness matrices, and V, 

V are the (n x 1) displacement and velocity vectors and p(t) is the (n x 1) excitation vector.  

 

In structural mechanics problems we consider the M and K matrices to be real, symmetric 

and positive definite, excluding the presence of rigid body modes. The matrix D, presenting a 

non-proportional damping, is assumed to be symmetric and non-negative.  

 

With the assumed free vibration in the form     
tt ee  XVXV  , ,         (1.2) 

the associated quadratic eigenvalue problem is 

 

(𝜆𝑗
2 𝐌 + 𝜆𝑗𝐃 + 𝐊) 𝐗𝑗 = 𝟎  ∀ (𝑗 = 1,⋯ , 𝑛)     (1.3) 

 

In Eq. (1.3) the j
th

 eigenvalue 𝜆𝑗 and the corresponding eigenmode 𝐗𝑗 appear in complex 

conjugate pairs (index j omitted): 

 

𝜆 = 𝜆𝑟 + 𝑖𝜆𝑖  ,          𝜆 = 𝜆𝑟 − 𝑖𝜆𝑖                  (1.4a) 

𝐗 = 𝐗𝑟 + 𝑖𝐗𝑖 ,        𝐗 = 𝐗𝑟 − 𝑖𝐗𝑖                            (1.4b) 

 

The dynamic equilibrium of a viscously damped single oscillator is governed by 

 
𝑚𝑣̈(𝑡) + 𝑐𝑣̇(𝑡) + 𝑘𝑣(𝑡) = 𝑞(𝑡) or                 (1.5a) 

𝑣̈(𝑡) + 2𝜂𝜔𝑣̇(𝑡) + 𝜔2𝑣(𝑡) = 𝑝(𝑡)                 (1.5b) 

 

where    𝑣̈  is acceleration, 

  𝑣̇   - velocity, 

  𝜔 = √
𝑘

𝑚
 - free vibration frequency, 

  𝜂 =
𝑐

2𝑚𝜔
 - Lehr’s damping ratio and  𝑝(𝑡) =

𝑞(𝑡)

𝑚
. 

 

The exponential solution   𝑥 𝑒𝜆𝑡   , introduced into the homogenous form of the differential 

equation (1.5b), yields the eigenvalue problem 

𝜆2 + 2𝜂𝜔 𝜆 + 𝜔2 = 0                   (1.6) 

The eigenvalue solution (assuming 𝜂 ≪ 1, subcritical damping) of Eq. (1.6) is a complex 

conjugate pair: 

 ir ii

Dir










2

2/1 1  where    𝜔𝐷 = 𝜔√1 − 𝜂2                   (1.7) 
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1.2 The constant phase lag problem 

Introducing the single-oscillator-eigenvalues (1.7) into (1.4a), we can express the j
th

 free 

vibration of the MDOFS as linear combination of the two complex conjugate eigenpairs 

(1.4b): 

𝐕 = 𝐗 𝑒𝜆𝑡 = 𝐗 𝑒(−𝜂𝜔±𝑖𝜔
√1−𝜂2)𝑡 = 

= 𝑒−𝜂𝜔𝑡[(𝐗𝑟 + 𝑖𝐗𝑖)(𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝑖 sin𝜔𝐷𝑡) + (𝐗𝑟 − 𝑖𝐗𝑖)(𝑐𝑜𝑠𝜔𝐷𝑡 − 𝑖 sin𝜔𝐷𝑡)] 
 

= 𝑒−𝜂𝜔𝑡 [ 2𝐗𝑟⏟
𝐅 cos𝜑

𝑐𝑜𝑠 𝜔𝐷𝑡 − 2𝐗𝑖⏟
𝐅 sin𝜑

sin𝜔𝐷𝑡]       (1.8) 

 

The last relation leads to the real form of a damped free oscillation for every k
th

 DOF: 

 

𝑉𝑘 = 𝑒
−𝜂𝜔𝑡[𝐹𝑘 𝑐𝑜𝑠(𝜔𝐷𝑡 + 𝜑𝑘)]        (1.9) 

 

where  𝜑𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛
(𝑋𝑖)𝑘

(𝑋𝑟)𝑘
 : phase lag/lead for the k

th
 DOF            (1.10) 

 

Since the viscous damping is assumed to be non-proportional, the free vibration solution 

(1.9) represents non-synchronous damped oscillation (i.e. the phase 𝜑𝑘 is different for each k
th

 

DOF). In the case of proportionally damped system we have to deal with synchronous free 

oscillation – i.e. the phase 𝜑𝑘 is constant - the same for all DOF (𝜑𝑘 = 0 for undamped sys-

tems) – see [6], [7], p.118.  

The features, showed in Eq.(1.9), (1.10) are well known and used in modal analysis, see 

for example [6]. In Sec. 2 and 3 of the present paper the constant phase lag in the proportional 

damping case is expressed analytically. The developed formulas are in dependence of the 

normalization of the modal matrix. 

 

2 MODAL ANALYSIS PROCEDURE BASED ON THE MASS NORMALIZED 

COMPLEX RIGHT EIGENVECTORS 

The procedure, briefly reviewed here, has been presented in details in [2] – [4]. 

2.1 The single mass oscillator  

The equation of motion of a damped single degree of freedom system (SDOFS) (1.5b) can 

be written in the extended form 

 

 

 

 

 

 







 t

0

tp

tv

tw

0ω

ω2η

tv

tw

ω0

01

pqkqm












































 2

2

2


                         (2.1a) 

    𝐦𝐪̇ + 𝐤𝐪 = 𝐩                                                           (2.1b) 

 

with the velocity   

 

    𝑤 = 𝑣̇                    (2.2) 
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The exponential approach 
tt ee  xqxq  , , introduced into the homogenous form of 

the differential equation (2.1), leads to the quadratic eigenvalue problem 

 

𝐪̇ + (𝐦−1𝐤)⏟    
𝒂

𝐪 = 𝟎      →   (𝐚 + 𝜆𝑗𝐞)𝐫𝑗 = 𝟎    (𝑗 = 1,2)                (2.3) 

The solution are two complex conjugate eigenvalues ( 1 , subcritical damped system):  

  









ir

ir

i

i
iω

ir









222

2/1 1                   (2.4a) 

where        22

ir   ,    



 r ,                                       (2.4b) 

and two corresponding complex conjugate right eigenvectors 

 𝐫𝑗 = [
𝜆𝑟 ±  𝑖𝜆𝑖

1
]       (𝑗 = 1,2)                   (2.5) 

The eigenvectors are normalized with respect to the mass matrix 

[𝐫1 𝐫2]𝑇 ∙ 𝐦 ∙ [𝐫1 𝐫2] = [
𝑔1

𝑔2
]        →   𝜑𝑗 =

𝐫𝑗

√𝑔𝑗
       (𝑗 = 1,2)            (2.6) 

and then combined into a modal matrix 𝜑: 

𝜑 = [𝜑1 𝜑2]                                    (2.7) 

Due to the mass normalization - Eq. (2.6), the orthogonality relationships (2.8), (2.9) can 

be derived: 





























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








 

22 0

01

10

01

10

01

0

01

ωω

1TTT
m                         (2.8) 









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










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



















 

0

2

0

0

0

0

0

2
2

2

2

2

ω

ω

ω

ω 













 1TTT

k             (2.9) 

The inverse of the complex modal matrix   ,  can be expressed analytically using 

computer algebra software: 

 

  






















iQPiZZ

iQPiZZ

21

21

2

1

12

1


                           (2.10) 

 

where 

   22

2

22

1 1111   ZZ               (2.11a) 

 

   21

2

12

2 11 ZZQZZP                 (2.11b) 
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2.2 The damped multi-degree-of-freedom-system 

The equations of motion (1.1) of damped MDOFS (n DOF) will be written in the state-

space form: 

  





 PQKQM

p

V

W

K

KD

V

W

K

M

GG











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









































































)(t

 ;    WV               (2.12a) 

PQKQM GG   ,                          (2.12b) 

where MG and KG are, respectively the (2n x 2n) symmetric generalized mass and the gener-

alized stiffness matrices.  

 

With the exponential solution 
te

XV   the quadratic eigenvalue problem (1.3) can be 

written in the 2n-dimensional form 

  0

Χ

Χ

KM GG 





















  ,                     (2.13) 

where 

 njii
j

jj

j

i

j

r

j

j

jj

j

i

j

r

j 2,1;;
)(

)()(

)()()(

)(

)()(

)()()( 






















Χ

Χ

Χ

Χ 



      (2.14) 

are the corresponding  n complex conjugate eigenpairs. 

Each j
th

 eigenvector-pair 
)()( ,

jj
ΧX  is normalized (index (j) omitted) with respect to the 

general mass matrix GM : 

iBA

T


















Χ

Χ
M

Χ

Χ
G


            ir ΦΦ

X
Φ i

iBA



 ,                (2.15a)  

iBA

T


















Χ

Χ
M

Χ

Χ
G


            ir ΦΦ

Χ
Φ i

iBA



 ,           (2.15b) 

 

Due to the normalization (2.15) we have the orthogonality relationships (2.16), (2.17) – 

expressed in terms of the j
th

 eigenvector-pair (index (j) omitted): 



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



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
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1
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

T

               (2.16) 


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






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








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
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
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





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ΦΦ

ΦΦ

K

KD

ΦΦ

ΦΦ

GK



T

               (2.17) 

The (2n x 2n) complex modal matrix GΦ is make up of the n eigenvector-pairs (2.15):  
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
















)()()1()1(

)()()()()1()1()1()1(

nn

nnnn

ΦΦΦΦ

ΦΦΦΦ

ΦG



 

             (2.18) 

By use of the orthogonality properties (2.16), (2.17) a modal decomposition of the equa-

tions of motion (2.12) can be performed: 

 

  


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
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


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
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where  

 Tnn baba )()()1()1( 







GG ΦAΦ
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W
             (2.20) 

 
   jj ba ,  : new complex variables, belonging to the j

th
 eigenpair 

 

In regard to Eqs.(2.8), (2.9) and (2.4b), the differential equations (2.19) can be transformed in 

pairs into the real form of SDOFS-equation (index (j) omitted): 
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           (2.21) 

where 
   jj yx ,  are real modal coordinates for each j

th
 eigenpair. 

The matrix    1
,


  of the corresponding j

th
 eigenvalue pair )()()( j

i

j

r

j i   can be 

computed by Eqs. (2.4), (2.5), (2.10), (2.11). 

The new (2n x 2n) transformation basis Υ in real space can be defined by combination of 

two complex transformations (2.19), (2.21): 

 

 



XΥXΨΦΦ
V

W

Υ

1

G

X

Ψ

1(n)

1(1)

G

1




















































 










  



n

n

y

x

y

x

1

1





            (2.22) 

By the aid of the relationship (2.22) the equations of motion (2.12) will be transformed into 

n real uncoupled SDOFS block equations as follows: 
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𝐘T ∙ [𝐌
−𝐊
] ∙ 𝐘

⏟          

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2 ]
 
 
 
 

∙

[
 
 
 
 
𝑥̇1
𝑦̇1
⋯
𝑥̇𝑛
𝑦̇𝑛]
 
 
 
 

⏟
𝐗̇

+ 𝐘T ∙ [
𝐃 𝐊
𝐊

] ∙ 𝐘
⏟          

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

= 𝐘T ∙ [
𝐩
]⏟    

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

           (2.23) 

 

It can be shown that the Υ -matrix and all „load“-vectors  [𝑔(𝑡) ℎ(𝑡)]𝑇  in Eq. (2.23) are 

purely real. After component multiplication of the analytically expressed terms of 𝚽𝑮 and of 

𝚿−𝟏 all imaginary parts cancel each other, see details in [3], [4].  

 

To each j
th

 eigenvector-pair in the real (2n x 2n) matrix 𝐘 are belonging two columns, de-

noted like 

𝐘 = [
⋯ 𝐘x

(j)𝐖
𝐘y
(j)𝐖

⋯

⋯ 𝐘x
(j)𝐕

𝐘y
(j)𝐕

⋯
]
  

 

Their components can be expressed analytically using Eqs.(2.10), (2.11): 

 

𝐘x
(j)𝐖

=
1

√1 − 𝜂2
{(𝑍2 𝜔√1 − 𝜂2 + 𝜂𝜔𝑍1)𝚽𝐫 + (𝑍1 𝜔√1 − 𝜂2 − 𝜂𝜔𝑍2)𝚽𝐢} 

𝐘y
(j)𝐖

=
1

√1 − 𝜂2
(𝜔2𝑍1𝚽𝐫 − 𝜔

2𝑍2𝚽𝐢) 

𝐘x
(j)𝐕

=
1

√1−𝜂2
(−𝑍1𝚽𝐫 + 𝑍2𝚽𝐢)  

𝐘y
(j)𝐕

=
1

√1−𝜂2
{(𝑍2 𝜔√1 − 𝜂2 − 𝜂𝜔𝑍1)𝚽𝐫 + (𝑍1 𝜔√1 − 𝜂2 + 𝜂𝜔𝑍2)𝚽𝐢}

             (2.24a-d) 

 

The two components of the associated “load” vector, Eq. (2.23), are purely real too: 

 

𝑔(𝑡) =
𝜔

√1−𝜂2
 {(𝑍2√1 − 𝜂2 + 𝑍1𝜂)𝚽𝐫

𝐓 + (𝑍1√1 − 𝜂2 − 𝑍2 𝜂)𝚽𝐢
𝐓} 𝐩(𝑡)                     (2.25a) 

 

ℎ(𝑡) =
𝜔2

√1−𝜂2
 {𝑍1𝚽𝐫

𝐓 − 𝑍2 𝚽𝐢
𝐓} 𝐩(𝑡)                          (2.25b) 

 

In [5] has been shown that in the case of proportional damping all coordinates of  𝐘y
(j)𝐖

 

and 𝐘x
(j)𝐕

 have to be equal to zero:  

 

𝐘𝐲
𝐖 =

1

√1−𝜂2
(𝜔2𝑍1𝚽𝐫 −𝜔

2𝑍2𝚽𝐢) = 𝟎       →     −𝑍1𝚽𝐫 + 𝑍2𝚽𝐢 = 𝟎                  (2.26) 

 

The relationship (2.26) leads to 

  →    
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=
𝑍1

𝑍2
=
√√1−𝜂2+(1−𝜂2)

√√1−𝜂2−(1−𝜂2)

=
𝜂

1−√1−𝜂2
= 𝑐𝑜𝑛𝑠𝑡.                     (2.27) 
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for all k
th

 DOF of the j
th

 eigenmode pair (𝚽𝐫 ± 𝑖𝚽𝐢) with corresponding eigenvalue  

(𝜆𝑟 ± 𝑖𝜆𝑖). This is the analytical proof of the statement of a constant phase lag/lead, see Eq. 

(1.9), (1.10). In the case of proportionally damped system each free vibration is a synchronous 

motion of all DOF. This special case is considered more detailed in [5], Sec. 3. 

 

2.3 Solution of the modal equations and back transformation 

Each SDOFS block equation in (2.23) can be solved eliminating the modal coordinate 
)( jx  

to obtain the usual form of the SDOFS equation of motion (index (j) omitted):  

)(
1

2
thyx


                              (2.28a) 

)(
1

)(
2

)(2
2

2 ththtgyyy 



                                    (2.28b) 

A usual step-by-step integration of Eq. (2.28b) yields the modal response
  ty j

. The final 

time series of the original n DOFs are calculated by superposition of the modal coordinates 
   jj yx , (assembled in 𝐗) in accordance to Eq. (2.22).  

3 MODAL ANALYSIS PROCEDURE BASED ON THE STIFFNESS  

NORMALIZED COMPLEX RIGHT EIGENVECTORS 

The procedure presented here, is a new variant of the method from Sec. 2. For this reason on-

ly the differences in comparison to the first variant are described.  

3.1 The single mass oscillator  

We operate with the same two corresponding complex conjugate eigenvectors  𝜑1/2 , but 

now they are normalized with respect to the stiffness matrix k, see Eq. (2.1), (2.6): 

 

[𝐫1 𝐫2]𝑇 ∙ 𝐤 ∙ [𝐫1 𝐫2] = [
ℎ11

ℎ22
]        →   𝜑𝑗 =

𝐫𝑗

√ℎ𝑗𝑗
       (𝑗 = 1,2)              (3.1) 

 

The normalization with respect to k leads now to the orthogonality relationships (3.2), (3.3): 






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



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
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

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
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

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









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




 

22 0

01

1
0

0
1

1
0

0
1

0

01

ωω

1TTT
m 







              (3.2) 




































 

0

2

10

01

10

01

0

2
2

2

2

2

ω

ω

ω

ω 



 1TTT

k             (3.3) 

 

The analytical expression for the inverse of the complex modal matrix   ,  is now: 

𝜑−1 =
1

2√1−𝜂2
[
𝑊2 − 𝑖𝑊1 𝑄 + 𝑖𝑃
𝑊2 + 𝑖𝑊1 𝑄 − 𝑖𝑃

]      (3.4) 

where 
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𝑊1 = √𝜔√1 − 𝜂2(1 − 2𝜂√1 − 𝜂2) ,     𝑊2 = √𝜔√1 − 𝜂2(1 + 2𝜂√1 − 𝜂2)         (3.5a) 

 

𝑃 = 𝜔(𝑊2√1 − 𝜂2 − 𝜂𝑊1) ,            𝑄 = 𝜔(𝑊1√1 − 𝜂2 + 𝜂𝑊2)     (3.5b) 

 

3.2 The multi-degree-of-freedom-system with damping 

The state-space form of equations of motion and the associated eigenvalue problem – Eq. 

(2.12) - (2.14) remain. The difference now is the normalization of the eigenvectors with re-

spect to the general stiffness matrix 𝐊G: 

 

iBA

T


















Χ

Χ
K

Χ

Χ
G


            ir ΦΦ

X
Φ i

iBA



 ,                 (3.6a)  

iBA

T


















Χ

Χ
K

Χ

Χ
G


            ir ΦΦ

Χ
Φ i

iBA



 ,             (3.6b) 

 

Due to the normalization (3.6) we have the orthogonality relationships (3.7), (3.8) – ex-

pressed in terms of the j
th

 eigenvector-pair (index (j) omitted): 


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
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
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


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
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
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
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
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
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1

1

ΦΦ
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M

ΦΦ
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T

                (3.7) 






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
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























1

1

ΦΦ

ΦΦ

K

KD

ΦΦ

ΦΦ

GK





T

                           (3.8) 

The modal matrix GΦ is build up according to Eq. (2.18). By the aid of GΦ the modal de-

composition of the equations of motions is performed to: 

 

𝚽𝐺
𝑇 [𝐌

−𝐊
]𝚽𝐺⏟          

[
 
 
 
 −

1

𝜆(1)

⋯

−
1

𝜆
(𝑛)]
 
 
 
 

 𝐀̇  +  𝚽𝐺
𝑇 [
𝐃 𝐊
𝐊

]𝚽𝐺⏟          

[
1

⋯
1

]

 𝐀 =   𝚽𝐺
𝑇 [
𝐩(𝑡)

]               (3.9) 

 

In regard to Eqs. (3.2), (3.3) the complex differential equations (3.9) can be transformed in 

pairs into the real form of SDOFS-equation, corresponding to the j
th

 eigenpair (index (j) omit-

ted): 
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           (3.10) 

The matrix    1
,


 in (3.10) for the j

th
 eigenvalue pair )()()( j

i

j

r

j i   can be comput-

ed by Eqs. (3.4),(3.5). 

 

The (2n x 2n) transformation basis 𝐘 is now defined formally equal to (2.22), but here by 

use of the complex transformations (3.9), (3.10): 

 

[
𝐖
𝐕
] = 𝚽𝐆 [

(𝜑(1))
−1

⋯

(𝜑(𝑛))
−1
]

⏟                
𝚿−1

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

= (𝚽𝐆𝚿
−1)⏟      

𝐘

𝐗 = 𝐘 𝐗                   (3.11) 

 

By the aid of the modal transformation basis 𝐘 from (3.11) the modal form of the equations 

of motion (2.23) remains. 

 

In this case the components of two columns in the real matrix 𝐘, belonging to the j
th

 eigenvec-

tor-pair, are - see also Eq. (3.5a-b): 

 

𝐘x
(j)𝐖 =

𝜔

√1 − 𝜂2
[(−𝜂 𝑊2 +√1 − 𝜂2 𝑊1)𝚽𝐫 − (𝜂 𝑊1 +√1 − 𝜂2 𝑊2)𝚽𝐢] 

𝐘𝑦
(j)𝐖 =

𝜔2

√1−𝜂2
[(−𝜂 𝑄 − √1 − 𝜂2 𝑃)𝚽𝐫 + (𝜂 𝑃 −√1 − 𝜂2 𝑄)𝚽𝐢]                               (3.12a-d) 

𝐘𝑥
(j)𝐕 =

1

√1 − 𝜂2
[𝑊2𝚽𝐫 +𝑊1𝚽𝐢] 

𝐘𝑦
(j)𝐕 =

𝜔

√1 − 𝜂2
[𝑄𝚽𝐫 − 𝑃𝚽𝐢] 

 

The two components of the associated “load” vector are now – by use of Eq.(3.5a-b): 

 

𝑔(𝑡) =
𝜔

√1 − 𝜂2
[(−𝜂 𝑊2 +√1 − 𝜂2 𝑊1)𝚽𝐫

𝐓 − (𝜂 𝑊1 +√1 − 𝜂2 𝑊2)𝚽𝐢
𝐓] 𝐩(𝑡) 

ℎ(𝑡) =
𝜔2

√1−𝜂2
[(−𝜂 𝑄 − √1 − 𝜂2 𝑃)𝚽𝐫

𝐓 + (𝜂 𝑃 − √1 − 𝜂2 𝑄)𝚽𝐢
𝐓]𝐩(𝑡)                       (3.13a-b) 

 

The numerical solution of each SDOFS block equation and the final back transformation to 

the original DOFs remain the same like in Sec. 2 – in accordance to Eqs. (2.28), (3.11). 
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The phase angle  𝜑𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛
Φ𝑖(𝑘)

Φ𝑟(𝑘)
  in the special case of proportional damping can be 

determine from the restriction that all coordinates of  𝐘x
(j)𝑉

 have to be equal to zero, see [5]:  

 

𝐘𝑥
𝑉 =

1

√1−𝜂2
(𝑊2𝚽𝐫 +𝑊1𝚽𝐢) = 𝟎                                      (3.14) 

 

The relationship leads together with (3.5a,b) to 

 

  →    
Φ𝑖(𝑘)

Φ𝑟(𝑘)
= −

𝑊2

𝑊1
=
1+2𝜂√1−𝜂2

2𝜂2−1
= 𝑐𝑜𝑛𝑠𝑡.                  (3.15) 

 

Comparing this result to Eq.(2.27), the constant phase lag depends obviously on the kind of 

the eigenmode normalization. 

4 MODAL ANALYSIS PROCEDURE BASED ON BOTH THE COMPLEX RIGHT 

AND LEFT EIGENVECTORS 

The procedure described in this section has been  presented in [3] in slightly different form. 

The variant here will be developed without normalization of the eigenvectors of the SDOFS. 

 

4.1 The single mass oscillator  

The form (2.3) of the general eigenvalue problem and his solution – Eq. (2.4), (2.5), re-

main the same. The eigenvectors  2,1jjr  are right eigenvectors of the matrix kma
1 . 

In order to determine the left eigenvectors of the matrix a  the substitution 
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has been introduced. The equation of motion (2.1b) is transformed to  
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The corresponding eigenvalue problem is formulated assuming 

tt ee  xfxf  ,                       (4.3) 
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  0xea0xemk
T

a

1

T















  


                     (4.4) 

 

where 

    






 
 

0

12
2

1




1T1TTT

mkmkkma                               (4.5) 

 

due to the symmetry of the matrices k and m. The two eigenvalues 2/1  of (4.4) remain the 

same - Eq. (2.4), but the corresponding complex conjugate eigenvectors are now 

𝐱1/2 = 𝐱𝑟 ± 𝑖𝐱𝑖 = [
𝜂∓𝑖√1−𝜂2

𝜔

1
]                      (4.6) 

The formulation  

 

  0eax
T            0xea

T         0lea j

T  j                  (4.7) 

 

shows that x represents here the left eigenvectors of the matrix kma
1  (respectively, the 

right eigenvectors of the matrix 
1T

mka
 ), i.e. jj lx   (j=1,2) .  

In this variant the modal matrix is defined without normalization by 

 

𝜑L = [𝐥1 𝐥2] = [
𝜂−𝑖√1−𝜂2

𝜔

1

𝜂+𝑖√1−𝜂2

𝜔

1
]                (4.8) 

 

The eigenvalue problem in the „left“ formulation (4.7) may be rewritten using the 
L  modal 

matrix as: 

 

𝐚𝐓𝜑L + 𝜑L𝛌 = 𝟎                   (4.9) 

 

where        𝛌 = [
𝜆

𝜆
]                  (4.10) 

 

represents the spectral matrix of
T

a . From Eq. (4.9) the diagonalization of the 
T

a matrix and 

the inverse relation can be developed: 

       LT1L1LLT
aλλa  



             (4.11) 

 

The inverse matrix   1L 
  is calculated now to: 

 

(𝜑L)−1 =
1

2√1−𝜂2
[
   𝑖𝜔 √1 − 𝜂2 − 𝑖𝜂

−𝑖𝜔 √1 − 𝜂2 + 𝑖𝜂
]               (4.12) 
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4.2 Modal decomposition of a multi-degree-of-freedom-system with damping 

The state-space form of equations of motion (2.12) is transformed in two variants using the 

substitution 

QKF G  ,        QKF G
                                     (4.13) 

 

1) PMQKMQ
1

G

A

G

1

G  


              (4.14a)  

               

2) 

PMKFMKF

PMKQKMKQK

1

GG

1

GG

1

GGG

1

GGG














           (4.14b) 

 

Because of the symmetry of GM and GK  we receive the relationship  

  T

T

A

G

1

G

T1

G

T

G

1

GG AKMMKMK 













 


              (4.15) 

 

Here we need the right and the left eigenvectors of the matrix 𝐀, to be calculated from the 

form (4.14a) resp.(4.14b): 

 

(𝐀 + 𝜆𝑗𝐄)𝐑𝑗 = 𝟎  resp.       (𝐀𝑇 + 𝜆𝑗𝐄)𝐋𝑗 = 𝟎             (4.16a-b) 

 

The formulations (4.14a) and (4.14b) yield directly the relationship between an arbitrary j
th

 

right and left eigenvector 

jGj RKL                    (4.17) 

 

The right and the left modal matrix, respectively, are complete sets of the corresponding n 

eigenpairs   

 nn11 RRRRR                                   (4.18a) 

 nn11 LLLLL                                          (4.18b) 

 
The orthogonality property of the eigenvectors leads to 

𝐑𝐓𝐋 = 𝐑𝐓𝐊𝐆𝐑 =

[
 
 
 
 
 
𝛾11

𝛾11
⋯

𝛾𝑛𝑛
𝛾𝑛𝑛]

 
 
 
 
 

                       (4.19) 

Using the main diagonal components kk  from Eq. (4.19) the modal matrices R , L are nor-

malized with respect to the general stiffness matrix GK : 

 R

n
R

n

R

1
R

1

R

k

R
ΦΦΦΦΦRΦ 

kk

k


1
             (4.20a)        
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 L

n
L

n

L

1
L

1

L

k

L
ΦΦΦΦΦLΦ 

kk

k


1
                  (4.20b)        

Due to (4.19) and the chosen type of normalization (4.20) we receive the relationships            

    EΦΦΦΦ
LTRRTL                     (4.21) 

     TL
1TLR

ΦΦΦ


               1LTR
ΦΦ


              (4.22) 

 

where E is a (2n x 2n) identity matrix.  

 

The eigenvalue problem (4.16b) may be rewritten using the L
Φ - modal matrix: 

  0ΛΦΦA0ΦEA
LLTLT  kk                 (4.23) 

where      

   njdiag j 2,,1 Λ   : spectral matrix          

From Eq. (4.23) can be derived the diagonalization of the T
A -matrix and the associated in-

verse relationship: 

      LT1L1LLT
ΦAΦΛΦΛΦA 


            (4.24)

           

The modal decomposition of the system equations (4.14b) is based on the modal superposi-

tion relationship  

  LL

B

L
BΦΦF

L


  


T

nn baba 11                 (4.25a) 

where  

  Tnn baba 11L
B    : new modal complex coordinates         (4.25b) 

The equations of motion (4.14b) are transformed into a set of 2n uncoupled complex equa-

tions: 

       
  










  





LP
Λ

T

PAΦBΦMKΦBΦEΦ
T1LLL

A

1

GG

1LLL1L
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
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
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


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


































L
nb

L
na

L
b

L
a

n

n

p

p

p

p

1

1

1

1

1

1









                (4.26) 

 

Each j-th pair of the n uncoupled equations (4.26) can now be transformed using Eq. (4.11) 

(index (j) omitted): 
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   

 
















 














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





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






























 
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p
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y

x

T
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0
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









  




  

L

a

LLLL

                       (4.27) 

The free vibration frequency 
 j  and the modal damping ratio 

 j for the j
th

 eigenpair 

    ir

j

ir

j ii   ,  are to be computed according to Eq. (2.4). The corresponding 

matrices  𝜑L, (𝜑L)−1 can be evaluated by Eq. (4.8), (4.12). 

 

A purely real transformation basis 
LΥ will be built up by combination of the complex 

transformations (4.26) and (4.27): 

𝐅 = 𝐊𝑮 [
𝐖
𝐕
] = 𝚽𝐋 [

(𝜑L(1))
−1

⋯

(𝜑L(𝑛))
−1
]

⏟                  
(𝚿L)−1

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

L

= 𝚽𝐋 (𝚿L)
−1⏟      

𝐘𝐋

𝐗𝐋 = 𝐘𝐋 𝐗𝐋          (4.28) 

 

In the product of the two complex matrices   1
 L

L
ΨΦ , Eq.(4.28), the imaginary parts 

cancel each other, the resulting transformation matrix
LΥ is purely real – see Eq. (4.30). The 

same applies to all “load” vectors  T

LL hg in Eq. (4.27).  

 

Finally the equations of motion (4.14b) can be uncoupled by means of the transformation ba-

sis 
LΥ  into n SDOFS block equations in real arithmetic: 

     
   

  

   

  

     
 

 

 

 

    



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
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
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                 (4.29) 

 

The components of 
LΥ , which belong to the j

th
 eigenvector-pair, are the following two 

columns - see (4.28), (4.12): 

[⋯ (𝐘𝑥)
(𝑗) (𝐘𝑦)

(𝑗)
⋯] = [𝚽r

𝐋 + 𝑖𝚽i
𝐋 𝚽r

𝐋 − 𝑖𝚽i
𝐋] ∙  

1

2√1 − 𝜂2
[
   𝑖𝜔 √1 − 𝜂2 − 𝑖𝜂

−𝑖𝜔 √1 − 𝜂2 + 𝑖𝜂
] 

 

                     =
1

√1−𝜂2
[⋯ −𝜔 𝚽i

𝐋     (𝚽𝑟
𝐋√1 − 𝜂2 +𝚽i

𝐋 𝜂) ⋯]       (4.30) 

 

The associated two components of the “load” vector from (4.29) are calculated - with re-

gard to (4.8) - to be fully real too: 
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[
 
 
 
 
⋯
𝑔𝐿
ℎ𝐿
⋯
]
 
 
 
 

= (𝐘𝐋)
−1𝐀T𝐏 = 𝚿𝐋 (𝚽

𝐋)−1⏟    
(𝚽𝐑)𝐓

𝐀T𝐏 =

[
 
 
 
 
 

⋯
2

𝜔
(𝜂 (𝚽r

𝐑)T +√1 − 𝜂2(𝚽i
𝐑)
T
)

2(𝚽r
𝐑)T
⋯

]
 
 
 
 
 

𝐀T𝐏         (4.31) 

 

4.3 Solution of the modal equations and back transformation 

The solution of each j
th

 SDOFS block equation in (4.29) is performed eliminating first the 

modal coordinate 
)( jx (index (j) omitted):  

 

























 


















)(

)(

0

12

10

01
2

th

tg

y

x

y

x

L

L








     (4.32) 

 

The second equation 

𝑥 = −
𝑦̇

𝜔2
+

ℎ𝐿

𝜔2
    (4.33a) 

 

should be introduced into the first one: 

 

𝑦̈ + 2𝜂𝜔 𝑦̇ + 𝜔2 𝑦 = −𝜔2 𝑔𝐿 + 2𝜂𝜔 ℎ𝐿 + ℎ̇𝐿   (4.33b) 

 

The modal response 𝑦(𝑡) is easy determined by step-by-step integration of Eq. (4.33b), 

then the 𝑥(𝑡) according to (4.33a). The final time series of the original n DOFs are calculated 

by superposition of the modal coordinates in accordance to Eq. (4.28):  

 

[
𝐖
𝐕
] = (𝐊𝑮)

−1 𝐘𝐋 𝐗𝐋     (4.34) 
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5 NUMERICAL EXAMPLE 

5.1 Structural system, stiffness and geometry data 

  

 
 

Fig. 1 Rotor blade beam model subjected to wind loads 

 

The stiffness data of the blade thin wall cross sections have been calculated in [14]. The 

generic aerodynamic blade geometry has been derived from real blade data.  

The finite element solution is based on the numerical integration of the system of differen-

tial equations for the Bernoulli-beam. The reference axis of the beam model coincides with 

the centre of the circular-section at the root – it is the real rotational axis of the rotor blade. 

Thereby the differential equations and all cross section stiffness data are referred to this axis, 

accounting for the eccentric mass application.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Rotor blade sections at 2.0 m – thin wall cross section model 
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5.2 Wind loads  

  

The wind loads are calculated according to the formula for the aerodynamic lift force per 

unit length of an aerofoil, see [13] p.59: 

 

𝐿 =
1

2
𝜌 ∙  𝑐(𝑟)  ∙ 𝑊2  ∙ 𝐶𝐿          (5.1) 

 

where:  𝑊  : air velocity relative to the aerofoil 

  𝜌  : air density = 1.225 [kg/m
3
] 

        𝑐(𝑟) : chord of the aerofoil 

  𝐶𝐿  : lift coefficient  𝐶𝐿 = 2𝜋 𝛼 = 2𝜋 (
𝜋

180
6.0) = 0.658,   

  the flow angle 𝛼 is assumed to be 6.0 [deg] 

   

The air velocity 𝑊 is the vector sum of the rotational speed Ω (assumed to reach 60 rpm in 

the initial four seconds) and the wind speed  𝑢, incident on the aerofoil in accordance with the 

Betz-theory: 

𝑊 = √(Ω 𝑟)2 + (
2

3
𝑢)

2

       where  Ω = (
60

30
𝜋) in [rad/s]     (5.2) 

 

The wind speed time series  𝑢(𝑡), used for calculation of the wind thrust force, is shown in 

fig.3 :  

 
Fig. 3   Wind speed time series 

 

 

The resulting wind thrust loads T(𝑡) per unit length along the x-axis of the rotor blade can 

be determined as function of the wind speed 𝑢(𝑡). In the structural model the wind thrust 

loads are acting as summarized nodal forces. 
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Fig. 4   Wind thrust function acting on the rotor blade at 12.5 m 

 

5.3 Relationships and data for the damping approach  

 

Starting point of the computation are the equations of motion  












































 0

P

V

W

0K

KD

V

W

K0

0M )(t




                  (5.3) 

where   )(tP  is the nodal force vector, representing the wind thrust according to Sec. 5.2. 

 
   The system equations (5.3) will be solved applying the proposed modal analysis method 

in Sec. 3 for two cases: non-proportional and proportional damping. 

 

The lowest four free-vibration frequencies and associated periods for the undamped system 

are calculated to 

𝑓1 = 2.643  [𝑠
−1] 𝑇1 = 0.378  [𝑠]

𝑓2 = 4.622  [𝑠
−1] 𝑇2 = 0.216  [𝑠]

𝑓3 = 7.942  [𝑠
−1] 𝑇3 = 0.126  [𝑠]

𝑓4 = 16.650  [𝑠
−1] 𝑇4 = 0.060  [𝑠]

               (5.4) 

  

Stiffness proportional damping as a special case of Rayleigh damping has been assumed: 

 

𝐃𝐩 = 𝛽 𝐊                      (5.5a) 

 

where   𝛽 =
2𝜂

𝜔1
=
𝜂 𝑇1

𝜋
= 0.000964[𝑠]               (5.5b) 

    

In Eq. (5.5b) the damping ratio  𝜂 = 0.008 for the first natural period 1T has been taken in 

accordance with [13] p. 249. 

 

The non-proportional symmetric damping matrix 𝐃𝐧𝐩 is build adding to the 𝐃𝐩-matrix a 

new matrix 𝐃𝐚, which represents the aerodynamic damping. The formulation is based on a 



E. Stanoev 

simple expression for the aerodynamic damping coefficient 𝑐𝑑(𝑟) per unit length, given in 

[13], p. 247: 

 

𝑐𝑑(𝑟) =
1

2
𝜌 ∙  Ω𝑟 ∙ 𝑐(𝑟) ∙

𝑑𝐶𝐿

𝑑𝛼
      [

𝑘𝑔

𝑠

1

𝑚
],      where       

𝑑𝐶𝐿

𝑑𝛼
= 2𝜋    (5.6) 

 

In accordance with Eq. (5.1), (5.2), the corresponding damping coefficients 𝑐𝑑(𝑟) along 

the x-axis of the rotor blade are calculated to 

 
         r     𝑐(𝑟)  𝑐𝑑(𝑟)             
       [m]  [m]    [kg/s.m] 

 

 

 

 

 

 

 

 

The coefficients 𝑐𝑑(𝑟), which represent the aerodynamic damping, are active for vibration 

in z-direction of the cross-section coordinate system, see Fig. 2. The associate symmetric 

damping matrix for the Bernoulli-beam element is derived by analogy with the method used 

to derive the finite element mass matrix, see [15]. Finally the symmetric system damping ma-

trix, 𝐃𝐧𝐩, is assembled in a finite-element manner, including structural (proportional) and aer-

odynamic damping:  

 

𝐃𝐧𝐩 = 𝐃𝐩 + 𝐃𝐚                 (5.7) 

 

5.4 Non-proportional damped system 

We use here the matrix 𝐃𝐧𝐩 – Eq.(5.7). The vector of the first ten complex conjugate ei-

genvalue pairs of the matrix G

1

G KMA   , see Eq.(4.16), is  

 

 

 

 

 

                  (5.8) 
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The number of modes considered in the modal transformation is limited to the first four ei-

genvector pairs. The structural system in Fig. 1 has 54 DOF. The corresponding (108x8) 

modal matrix 𝚽𝐆 with stiffness normalized eigenvectors – Eq.(3.6a,b), is computed to (only 

the first ten rows are printed) 

 

                    (5.9) 

 

The matrix  𝚿−1 is now calculated in the case of four involved eigenmodes according to Eq. 

(3.11), (3.4): 

 

𝚿−1 =

[
 
 
 
 
 (𝜑

(1))
−1

(𝜑(2))
−1

(𝜑(3))
−1

(𝜑(4))
−1
]
 
 
 
 
 

=                         

 

                   (5.10) 

 

Finally the (108x8) real transformation matrix 𝐘 is computed according to (3.11) – here 

only the first ten rows: 

 

  

 

 

  
𝐘 = 
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                     (5.11) 

After the modal transformation the time-dependent “load” vector is calculated to be a func-

tion of the wind speed time series, see Fig. 3 : 

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔3(𝑡)

ℎ3(𝑡)]
 
 
 
 

= 𝐘T ∙ [
𝐩
] =                 (5.12) 

 

 

The resultant four uncoupled SDOFS block equations from type of Eq. (3.10), prepared in 

the form (2.23), are solved by step-by-step integration:  

 

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2]
 
 
 
 

∙

[
 
 
 
 
𝑥̇1
𝑦̇1
⋯
𝑥̇𝑛
𝑦̇𝑛]
 
 
 
 

⏟
𝐗̇

+

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

=

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

, (𝑛 = 4) 

                         (5.13) 
 

where  [𝜔𝑖] = 

 

               [𝜂𝑖] =      (5.14a,b) 

 

The effect of the implied additional aerodynamic damping results evidently in the large 

damping ratio 𝜂𝑖 = 0.33269  for the first free vibration. 

The vibration-response has been determined in the time 0… 25.6 s, the time step length for 

the applied Newmark integration method is 0.03665 s. 

 

The time response of the modal coordinates  𝑦𝑗(𝑡), 𝑥𝑗(𝑡), (𝑗 = 1,2,3) are shown in the figures 

5a-c:  
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Fig. 5a Time response of the modal coordinates 𝑦1(𝑡), 𝑥1(𝑡) for the case “non-proportional damping” 

 
Fig. 5b Time response of the modal coordinates 𝑦2(𝑡), 𝑥2(𝑡) for the case “non-proportional damping” 

 

 
Fig. 5c Time response of the modal coordinates 𝑦3(𝑡), 𝑥3(𝑡) for the case “non-proportional damping” 

 

By a back transformation according to Eq. (3.11) the total response  tV  is obtained - see 

Figs. 6, 7 (vibration components at the rotor blade tip node #10). 

Fig.6  Total vibrations 𝑢2(𝑡), 𝑢3(𝑡)  [𝑚]  (y- and z-direction, see fig.2) at the rotor blade tip - node #10 
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Fig.7   Total rotation 𝜑1(𝑡), 𝜑2(𝑡)  [𝑟𝑎𝑑] at the rotor blade tip (about x- and y-axis at node #10) 

 

The vibration responses, computed by direct step-by-step integration of the equations (5.3), 

are practically identical to those in Fig. 6,7. 

5.5 Proportional damped system 

In this case we use the derived symmetric damping matrix 𝐃𝐩 – Eq.(5.7). The first ten low-

est complex conjugate eigenvalue pairs, resulting from Eq. (2.13), are now: 

 

 

 

 

 

 

        (5.15) 

 

 

 

 

 

 

 

The corresponding (108x8) 𝚽𝐆 modal matrix – Eq. (2.18), comprises the first four com-

plex conjugate eigenvector pairs, normalized with respect to the stiffness matrix – see 

Eq.(3.6a,b). In order to verify the derived relationship for the constant phase lag, see (3.15), 

we compute this ratio for all components of the involved  (𝚽𝐫 ± 𝑖𝚽𝐢)
(𝑗) (𝑗 = 1,…4)  eigen-

vectors (for instance the first ten rows only): 

        

 

=
1+2𝜂𝑗√1−𝜂𝑗

2

2𝜂𝑗
2−1

  ,     (𝑗 = 1,… 4)        ↔    

                      (5.16)      

 

 

The corresponding damping ratios 𝜂𝑗 are computed in accordance with Eq. (2.4b). 
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The (108x8) real transformation matrix 𝐘, computed in regard with Eq. (3.11), (3.12), has 

now the form (only the first twenty rows are printed):  

 

 

 

 
                

      

                (5.17)  𝐘 =    

 
 

 

 

 

 

 

The time-dependent “load” vector in the general modal transformed equations (2.23) is 

now calculated according to Eq. (3.13):  

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔4(𝑡)

ℎ4(𝑡)]
 
 
 
 

=                                       (5.18) 

 

 

The time dependence is expressed through the time series for 𝑢(𝑡) in fig. 3. Note that in 

the special case of proportionally damped system  𝑥𝑗 = 𝑦̇𝑗 , i.e. ℎ𝑗(𝑡) = 0. 

In the resultant four uncoupled SDOFS block equations from type (3.10), the free frequen-

cies and the modal damping ratios are: 

[𝜔𝑖] = 

            (5.19a,b) [𝜂𝑖] =

After step-by-step integration of the four modal equations, the time series of the modal co-

ordinates    tytx jj , ,  4...,1j , are obtained – Fig. 8:  
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Fig. 8   Time response of the modal coordinates 𝑦𝑗(𝑡), 𝑥𝑗(𝑡) (𝑗 = 1,2,3) for the case “proportional damping” 

 

The total responses  tV  are computed by a back transformation according to Eq. (3.11) – see 

Figs. 9a-d (here in the time range of 0 – 10 sec): 
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Fig 9a - Total vibration    mtu2  at the rotor blade tip (y-direction at node #10) for the case “proportional 

damping” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9b - Total vibration    mtu3
 at the rotor blade tip (z-direction at node #10) for the case “proportional 

damping” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9c - Total torsion    radt1   about x-direction at node #10 for the case “proportional damping” 
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Fig 9d - Total rotation    radt2  about y-axis at node #10 for the case “proportional damping” 

 

The time series for the DOF calculated by direct step-by-step integration of the equations (5.3) 

are practically identical to the vibrations shown in Fig. 9a-d. The only difference occurs in the 

torsional vibration, see fig.10. The deviations may be explained by the absence of a torsional 

eigenmode in the four employed eigenvectors in the modal matrix. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10 - Total torsion    radt1  at node #10, calculated by direct step-by-step integration  

(“proportional damping”) 

 

 

6 CONCLUSIONS  

 A general modal decomposition method for MDOFS with non-proportional damping is 

presented in three variants. In general, all of them are based on the complex eigenvalue 

solution of a structural model with symmetric non-proportional damping matrix. The 

complex conjugate eigenpairs – eigenvalues and the corresponding eigenvectors – are to 

be computed first for the “state space” form of the equations of motion. By combining of 

two complex transformations, connected to the eigenvalue problems of the SDOFS and 

the MDOFS, three different kinds of a modal transformation matrix 𝐘 in real space are 
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developed analytically to perform a modal decomposition of the equations of motion in 

real arithmetic. 

 The first variant of the suggested procedure is described in Sec. 2. The real transfor-

mation matrix 𝐘 is assembled employing the right complex conjugate eigenvector pairs, 

normalized in both the SDOFS and MDOFS cases with respect to the corresponding mass 

matrix. The difference in the second variant, described in Sec. 3, is the normalization of 

the both modal matrices with respect to the corresponding stiffness matrices. In Sec. 4 

has been presented the third variant, based on both the right and the left complex eigen-

vector pairs. In this version the complex conjugated eigenvectors for the MDOFS are 

normalized with respect to the stiffness matrix, the “left” modal matrix for the SDOFS 

don’t need normalization.  

 All variants of the presented modal procedure retain the common advantages of the clas-

sic modal decomposition of the equations of motion. Usually an uncomplete modal trans-

formation should be performed by use of a few eigenmodes. Employing only the lowest 

few (k) eigenvector pairs in the 𝐘 -basis (k<<n) is leading with sufficient numerical accu-

racy to the total time response of all n DOF. The equations of motion are transformed into 

k uncoupled SDOFS block equations. 

 The k uncoupled modal equations are easily numerically integrated like a SDOFS-

equation – the result is the time response of the modal coordinates. Finally a back trans-

formation to the original DOF has to be performed using the suggested new real 𝐘 –basis. 

 The applications of the first and the second variants of the suggested method to the spe-

cial case of proportionally damped system (employing a Rayleigh damping matrix) is 

leading to a simple analytical expression for the constant ratio  
Φ𝑖(𝑘)

Φ𝑟(𝑘)
 for all k

th
 DOF of 

each considered eigenmode  (𝚽𝐫 ± 𝑖𝚽𝐢). This is an indirect proof of the statement for 

synchronous free vibrations in the case of proportional damping. For more detailed 

investigations on this topic see [5]. 

 In Sec. 5 a numerical example – vibration of a rotor blade with 54 DOF - demonstrates 

the performance of the presented modal procedure in the variant of Sec. 3 for two cases – 

non-proportional and proportional (Rayleigh) damping. In the first variant the damping 

matrix of the system contains a stiffness-proportional part and a simple approximated 

aerodynamic damping part. In the second variant the formula for the constant phase of the 

resonance modes is verified numerically. 

 Real life applications of the proposed modal analysis method and possible numerical 

complications are discussed more widely in [4], [5]. The present paper is a briefly over-

view of some possible variants of the suggested new modal transformation procedure in 

real space for viscous non-proportionally damped structural models. 
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