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Abstract. In the general case of non-proportionally damped structural model the associated
quadratic eigenvalue problem leads to complex eigenvalues and eigenvectors. The modal de-
composition of the equations of motion is usually to be performed in complex space.

In this paper are presented possible variants of a general method [2] - [5] for modal trans-
formation of damped multi-degree-of-freedom-systems (MDOFS) with non-modal symmetric
damping matrix. The assembly of a modal transformation matrix in real space is based either
on the conjugated complex left eigenvectors, or on the right eigenvectors, or on a combina-
tion of the left and right eigenvectors of the system. The eigenvector normalization can be
performed with respect to the general mass or to the general stiffness matrix. The equations of
motion are stated in state-space formulation. The developed real-space modal transformation
matrix is always built by a combination of two complex transformations. Analytically expres-
sions for all presented variants of the modal transformation basis are developed be the aid of
computer algebra software. Those formulas operate with the real and the imaginary parts of
the eigenvectors and the associated eigenvalues. All variants of the suggested modal proce-
dure retain the common advantages of the classic modal decomposition of the equations of
motion.

The vibrations of a rotor blade of a wind turbine subjected to wind thrust loads have been
calculated in two variants to demonstrate the performance of the presented modal analysis
procedures. The initial computation of the complex eigenvalue solution of the FEM beam
model and all subsequent computations are done by the aid of computer algebra software.
The suggested procedures can be applied in structural systems containing different damping
and energy-loss mechanism in various parts of the structure, described by non-proportional
damping matrix.
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1 INTRODUCTION

The classic modal transformation of the equations of motion of multi-degree-of-freedom-
systems (MDOFS) is applied to systems without damping. Fully real free frequencies and ei-
genvectors are the solution of the associated linear eigenvalue problem. The inclusion of
damping in the equations of MDOFS leads to a quadratic eigenvalue problem with corre-
sponding complex conjugate pairs of eigenvalues and eigenvectors. The modal decomposition
of the equations has to be performed in complex space.

The damping can be account for in a simple way by use of the Rayleigh damping assump-
tion — this leads to proportional damping matrix. In this special case the real eigenvectors of
the undamped system are also eigenvectors of the system with proportional damping. The cor-
responding modal matrix, to be used for modal decomposition of the equations of motion, is
fully real. In the general case of viscous damping, represented by non-proportional symmetric
damping matrix, we have to deal with complex conjugate pairs of eigenvectors. This case is
considered in the present paper.

There are presented three variants of a new modal transformation procedure for structural
models with non-proportional symmetric damping matrix. The first one, briefly outlined in
Sec. 2, is based on the complex right eigenvectors, normalized with respect to the mass matrix.
A more detailed presentation of this procedure is given in [2] — [4]. The second variant, de-
veloped in a similar way to the first one, operates with the complex right eigenvectors too, but
they are normalized with respect to the stiffness matrix. The procedure is described in details
in Sec. 3.

In Sec. 4 is presented the third variant of the suggested procedure. Here we operate with
both the right and the left complex eigenvectors of the MDOFS, the normalization is with re-
spect to the stiffness matrix.

The main subject in all variants is to avoid the modal decomposition in complex arithmetic
by assembling of a new modal transformation matrix in real space, belonging to the “state
space” form of the equations of motions. The columns of the matrix are developed analytical-
ly by a combination of two complex transformations. Considering the proportional damping
case which is also included, an analytical formula for the constant phase lag/lead of free vi-
brations is derived in both procedures presented in Sec. 2 and Sec. 3.

In all variants of the suggested procedure the complex eigenvectors and eigenvalues of the
structural model should be computed first. In the presented example in Sec. 5 — vibration of a
rotor blade of a wind generator - computer algebra software was applied to solve the eigen-
value problem. In real life applications of the presented method to high dimensional problems
it must be available a reliable eigenmode solver for large complex eigenvalue computations.
There are many literature references for large scaled problems with various solution strategies,
see [10] — [12]. The author has used an implicitly restarted Arnoldi/Lanczos method [11], [12]
to solve the complex eigenvalue problem in an application of the method to a fluid-structure-
foundation interaction problem, see more details in [1] - [3].

In Sec. 5 the proposed modal analysis method, presented in Section 4, has been applied to
a rotor blade beam structure with 54 DOF. The numerical example demonstrates the perfor-
mance of the method for the general case of non-proportional damping. In this case the damp-
ing matrix of the system contains a stiffness proportional (Rayleigh) damping and
aerodynamic (non-proportional) damping parts. In the second variant of the solution — with
proportional damping matrix, the formula for the constant phase of the resonance modes is
verified numerically.
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1.1 Free vibrations of a viscously damped system

The equations of motion of a damped MDOFS are
MV + DV + KV = p(t) (1.1)

where M, D and K are, respectively the (n x n) mass, damping and stiffness matrices, and V,
V are the (n x 1) displacement and velocity vectors and p(t) is the (n x 1) excitation vector.

In structural mechanics problems we consider the M and K matrices to be real, symmetric
and positive definite, excluding the presence of rigid body modes. The matrix D, presenting a
non-proportional damping, is assumed to be symmetric and non-negative.

With the assumed free vibration in the form
V=Xe", V=AXe", (1.2)
the associated quadratic eigenvalue problem is

(ZM+ 4D+K)X; =0 v(i=1,-,n) (1.3)

In Eq. (1.3) the j" eigenvalue A; and the corresponding eigenmode X; appear in complex
conjugate pairs (index j omitted):

A=A +ik,

A —id; (1.4a)
X=X, +iX;, -

1
X =X, —iX; (1.4b)

The dynamic equilibrium of a viscously damped single oscillator is governed by

mv(t) + cv(t) + kv(t) = q(t) or (1.5a)
B(t) + 2nwv(t) + w?v(t) = p(t) (1.5b)
where % IS acceleration,

% - velocity,

w = \g - free vibration frequency,

n= ZT:W - Lehr’s damping ratio and  p(t) = %t).

The exponential solution x et | introduced into the homogenous form of the differential
equation (1.5b), yields the eigenvalue problem

AP +2nwl+ 0w?=0 (1.6)

The eigenvalue solution (assuming n « 1, subcritical damping) of Eq. (1.6) is a complex
conjugate pair:

A, =—notio 1—772 =A ti4 where wp=wy1—-1n? (1.7)
=

T ﬂi =wp
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1.2 The constant phase lag problem

Introducing the single-oscillator-eigenvalues (1.7) into (1.4a), we can express the j free
vibration of the MDOFS as linear combination of the two complex conjugate eigenpairs
(1.4b):

V=X e’“ =X e(—nwiiww/l—nz)t —
= e M (X, + iX;)(cos wpt + isinwpt) + (X, — iX;)(cos wpt — i sinwpt)]

= e Nt 2X, coswpt — 2X; sinwpt (1.8)
F cos ¢ Fsing

The last relation leads to the real form of a damped free oscillation for every k™ DOF:

Vi = e "HF, cos(wpt + @) (1.9)
where Qr = arctan% : phase lag/lead for the k™ DOF (1.10)

Since the viscous damping is assumed to be non-proportional, the free vibration solution
(1.9) represents non-synchronous damped oscillation (i.e. the phase ¢, is different for each k™
DOF). In the case of proportionally damped system we have to deal with synchronous free
oscillation — i.e. the phase ¢ is constant - the same for all DOF (¢, = 0 for undamped sys-
tems) — see [6], [7], p.118.

The features, showed in Eq.(1.9), (1.10) are well known and used in modal analysis, see
for example [6]. In Sec. 2 and 3 of the present paper the constant phase lag in the proportional
damping case is expressed analytically. The developed formulas are in dependence of the
normalization of the modal matrix.

2 MODAL ANALYSIS PROCEDURE BASED ON THE MASS NORMALIZED
COMPLEX RIGHT EIGENVECTORS

The procedure, briefly reviewed here, has been presented in details in [2] — [4].

2.1 The single mass oscillator

The equation of motion of a damped single degree of freedom system (SDOFS) (1.5b) can
be written in the extended form

mqi kq =qp | S (2.1b)

with the velocity

W=7 (2.2)
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The exponential approach q=xe*", ¢=Axe", introduced into the homogenous form of
the differential equation (2.1), leads to the quadratic eigenvalue problem

qg+(m’'k)q=0 - (a+le)r;=0 (j=12) (2.3)

a

The solution are two complex conjugate eigenvalues (77 <<1, subcritical damped system):

A=A +i4
Ay =N £ (770))2_ :_7750""50\/1 n? { +:/% (2.42)
2 2 A
where  w=+(4 f+(4) . n=-2, (2.4b)
w

and two corresponding complex conjugate right eigenvectors

Ar £ A .
]=[r—1l l] G =1,2) (2.5)
The eigenvectors are normalized with respect to the mass matrix
rr L,|T-m-[r; r :[gl ] > @, =—L =12 2.6
[ I2] [ T2 7 =I5 U ) (2.6)
and then combined into a modal matrix ¢:
¢ =[P1 ¢2] (2.7)

Due to the mass normalization - Eg. (2.6), the orthogonality relationships (2.8), (2.9) can
be derived:

cJJ1 0] 1o R E IS 8)
=00 _o? P70 1 ? 10 11 Tlo —e? '

2nw @ -4 0 -4 0| , 270 o°
k = — <> — = 2.9
v (oq){w o}(p{o —J q’{o —Jg” o 0 (29)
The inverse of the complex modal matrix ¢(w,7) can be expressed analytically using
computer algebra software:

~7,-iZ P—i
L [fmm) P

(2.10)
24/1-17?

(-z,+iz,) P+iQ

where

Z, =177 + -2 2, =\ \1-12 (-7 (2.11a)

P:a)( 1_772 22_7721) Q=w(ﬁzl+ﬂzz) (2.11b)
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2.2 The damped multi-degree-of-freedom-system

The equations of motion (1.1) of damped MDOFS (n DOF) will be written in the state-
space form:

M W| [D KI|[W] [p()
+ = ; V=W (2.12a)
K|V K V
—_
Mg 0 Kg Q P
M., Q+K.Q=P, (2.12b)

where Mg and Kg are, respectively the (2n x 2n) symmetric generalized mass and the gener-
alized stiffness matrices.

With the exponential solution V = Xe*" the quadratic eigenvalue problem (1.3) can be
written in the 2n-dimensional form

AX

(AMg +Kg) =0, (2.13)
X

where

A0 = 30 420 %{ﬂ(;ﬁ(”} 20 40 _ig _)l:/l(;—)(i{)m} (j=12...n) (2.14)

are the corresponding n complex conjugate eigenpairs.

Each j™ eigenvector-pair X%V, X is normalized (index (j) omitted) with respect to the

general mass matrix Mg :
AT

[AX [AX] X .

Mg =A+iB - O= — =@ _ +iD,, (2.15a)
L X ] L X A+iB
— —T R — J—
AX M, AX|_AliB > ®= X_ -0 i, (2.15b)
L X ] X ] A-iB

Due to the normalization (2.15) we have the orthogonality relationships (2.16), (2.17) —
expressed in terms of the j™ eigenvector-pair (index (j) omitted):

M 1
AD A® AD AD|_ (2.16)
®» o|| -K|lo o 1
I ]
Mg
— T - .
D K _2
AD AD A A®)_ _ 2.17)
» @||K ® )
) - K

The (2n x 2n) complex modal matrix @ is make up of the n eigenvector-pairs (2.15):
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o0 2% " e A V"
@, = (2.18)

o o e e @O "

By use of the orthogonality properties (2.16), (2.17) a modal decomposition of the equa-
tions of motion (2.12) can be performed:

M : D K t
@L{ _K}(I)GA + @L{K }@GA = mg{p()} (2.19)
E diag{—ﬂ“)}
where
W (VN EY) ) K
y 0y A=, -[a®b® ... a®p®] (2.20)

a’ bW : new complex variables, belonging to the j eigenpair

In regard to Egs.(2.8), (2.9) and (2.4b), the differential equations (2.19) can be transformed in
pairs into the real form of SDOFS-equation (index (j) omitted):

10 X -1 0 [x] A®T p(t)
-T -1 + -T T -1 — L e
@ {0 Jco ; 2 _J(p @ LL(DTp(t)

[N — - — - -

o e ] B [ e

where x| yU) are real modal coordinates for each j™ eigenpair.
The matrix [p(w,7)] " of the corresponding j" eigenvalue pair A = A0 +iA® can be
computed by Egs. (2.4), (2.5), (2.10), (2.11).

The new (2n x 2n) transformation basis Y in real space can be defined by combination of
two complex transformations (2.19), (2.21):

X
(p®)" y
@, - d. =@ ¥ X=Y-X (2.22)
v ( (n))—l Y
@ X, Y
pl _yn_

X
By the aid of the relationship (2.22) the equations of motion (2.12) will be transformed into
n real uncoupled SDOFS block equations as follows:
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]

yr.[M [ylL [D oy - o v'-[P] (2.23)
- ] tcf:J [2’““’1 “i | kfz [ii]

| - | 2‘ X [g"J

l o] [ o i n

It can be shown that the Y -matrix and all ,,load“-vectors [g(t) h(t)]T in Eq. (2.23) are
purely real. After component multiplication of the analytically expressed terms of &, and of
-1 3|l imaginary parts cancel each other, see details in [3], [4].

To each jth eigenvector-pair in the real (2n x 2n) matrix Y are belonging two columns, de-
noted like
Y)E])W Y}EJ)W

Y = ) .
Y)E])V Y}E])V

Their components can be expressed analytically using Egs.(2.10), (2.11):

YOV = \/%172{(22 w1 =17 + na)Zl) @, + (21 wy1—12 — anz) cpi}

. 1
YOV = —— (0?2, @, — 0?Z,®))
1 —n?
n

j 1
Y;E])V = iz (=Z,@ + Z,P;)

N i
Y = (2 0V T =17 —nwZ) @, + (21 0T= 17 +10Z;) ) (2.242-d)

The two components of the associated “load” vector, Eq. (2.23), are purely real too:
9 = 2= {(ZVT =7 + Zm)@f + (2T =77 = Z )@} () (2.252)
w2
h(©) = 7= {2197 = Z @i} p(®) (2.25b)

In [5] has been shown that in the case of proportional damping all coordinates of YSEDW
and Y,EDV have to be equal to zero:

w_
Yy = \/_

The relationship (2.26) leads to
iy _z _ WAy
oo % Jﬂ gy VAT

(W2Z,®, — w2 Z,®) =0 > —Z,®.+Z,® =0 (2.26)

= = const. (2.27)
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for all k™ DOF of the j™ eigenmode pair (®, + i®;) with corresponding eigenvalue

(A, £ i4;). This is the analytical proof of the statement of a constant phase lag/lead, see Eq.
(1.9), (1.10). In the case of proportionally damped system each free vibration is a synchronous
motion of all DOF. This special case is considered more detailed in [5], Sec. 3.

2.3 Solution of the modal equations and back transformation

Each SDOFS block equation in (2.23) can be solved eliminating the modal coordinate x’
to obtain the usual form of the SDOFS equation of motion (index (j) omitted):

X = y+i2h(t) (2.28a)
w

. . 2 1.
V4200 Y +a’y = g(t)—gh(t)—gh(t) (2.28b)

A usual step-by-step integration of Eq. (2.28b) yields the modal response y'(t). The final
time series of the original n DOFs are calculated by superposition of the modal coordinates
x| yU) (assembled in X) in accordance to Eq. (2.22).

3 MODAL ANALYSIS PROCEDURE BASED ON THE STIFFNESS
NORMALIZED COMPLEX RIGHT EIGENVECTORS

The procedure presented here, is a new variant of the method from Sec. 2. For this reason on-
ly the differences in comparison to the first variant are described.

3.1 The single mass oscillator

We operate with the same two corresponding complex conjugate eigenvectors ¢/, , but
now they are normalized with respect to the stiffness matrix k, see Eq. (2.1), (2.6):

rj

h
rn )7 k-[n rz]:[“ L ] - =
22

G=12) (3.1)

JjJ

The normalization with respect to k leads now to the orthogonality relationships (3.2), (3.3):

1
-—= 0 -— 0
1 0 ~ ~ 1 0
(DTm(D:(/’T{O 2} | A . o @ T A Lo 1 :|: 2} (3.2)
- O _= O _= 0 —
A A
2nw  w* 10 1 0| _ 2nw  o°
Tk — T — T 1: 33
v gp[af 0}0 {o J < ¢ {o 1}0 [wz 0 (33)

The analytical expression for the inverse of the complex modal matrix ¢(w,7) is now:

L1 [Wo—iW, Q+iP
@ _21—n2[W2+iW1 Q —iP (3.4)

where
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W, = \/w,/1 —n2(1-2nJ1—n2), W,= \/a),/l —12(1+ 291 —92) (3.5a)
P = w(Wy/1—n2 — W), Q = w(W/1 =12 + W) (3.5h)

3.2 The multi-degree-of-freedom-system with damping

The state-space form of equations of motion and the associated eigenvalue problem — Eq.
(2.12) - (2.14) remain. The difference now is the normalization of the eigenvectors with re-
spect to the general stiffness matrix K:

AX [AX X :

K =A+iB - O®= =0, +10,, 3.6a
X | G_X} JA+iB (3.62)
—— —T ——— —
AX K AX|_AliB > ®= X_ —® -0, (3.6h)
X ] X A-iB

Due to the normalization (3.6) we have the orthogonality relationships (3.7), (3.8) — ex-
pressed in terms of the j™ eigenvector-pair (index (j) omitted):

- o 1
@ 20| [M A0 10| |75

= = 3.7)
® || -K|lo o 1
i W A

Mg

20 @] [D K]1e i@| [t 9
® o ||K o @ 1 '
) ) K

The modal matrix ® is build up according to Eq. (2.18). By the aid of ® the modal de-
composition of the equations of motions is performed to:

@, A + @] 2 K] ®; A = @ [p(t)] (3.9)

[1 1]

In regard to Egs. (3.2), (3.3) the complex differential equations (3.9) can be transformed in

pairs into the real form of SDOFS-equation, corresponding to the j™ eigenpair (index (j) omit-
ted):

»
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1
iy . x L1 . _‘x' _ A®" p(t)
@ _i @ _y_ + @ |: 1:|¢ _y_ Q |:16T p(t)j|
2 N N NSNS
R EE - R .10
0 - v ? v h(t) '

The matrix [p(e,7)]in (3.10) for the j" eigenvalue pair A = A9 +iA? can be comput-
ed by Egs. (3.4),(3.5).

The (2n x 2n) transformation basis Y is now defined formally equal to (2.22), but here by
use of the complex transformations (3.9), (3.10):

(v ]
[W] = @ || = (@P )X =YX (3.11)
V o]
e 2

By the aid of the modal transformation basis Y from (3.11) the modal form of the equations
of motion (2.23) remains.

In this case the components of two columns in the real matrix Y, belonging to the j™ eigenvec-
tor-pair, are - see also Eqg. (3.5a-b):

- w
Y>(<])W=ﬁ[<—77w2+ /1—772 W1>¢r—<TIW1+ [1-7n? W2>q’i]
vi—n

YW= (< Q- JT-n2P) @, +(nP - yT-12Q) ¥ (3.12a-d)
/1—7]2
| 1
YV = (W@, + W, @]
I—-n
YOV =2 0@, - Pa;]
y = 1— 5 Q r i
n

The two components of the associated “load” vector are now — by use of Eq.(3.5a-b):

90 = ——— (= W, +T= 72 W,) ®F — (n W, + 1 -2 ;) & | p(0)

1—n?
h(t) = Jl“%—n [(—nQ—V1=-m2P)®f + (nP-1-7%Q)®|p() (3.13a-h)

The numerical solution of each SDOFS block equation and the final back transformation to
the original DOFs remain the same like in Sec. 2 — in accordance to Eqgs. (2.28), (3.11).
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The phase angle ¢, = arctany in the special case of proportional damping can be
r(k)

determine from the restriction that all coordinates of YS)V have to be equal to zero, see [5]:

1
Yy‘c/ = W(qu)r + qu)i) = 0 (314)

The relationship leads together with (3.5a,b) to

D; w. 1+2n/1-n2
) Tz # = const. (3.15)
cD‘l"(k) W1 27} -1

Comparing this result to Eq.(2.27), the constant phase lag depends obviously on the kind of
the eigenmode normalization.

4 MODAL ANALYSIS PROCEDURE BASED ON BOTH THE COMPLEX RIGHT
AND LEFT EIGENVECTORS

The procedure described in this section has been presented in [3] in slightly different form.
The variant here will be developed without normalization of the eigenvectors of the SDOFS.

4.1 The single mass oscillator

The form (2.3) of the general eigenvalue problem and his solution — Eq. (2.4), (2.5), re-
main the same. The eigenvectors r, (j =1, 2) are right eigenvectors of the matrix a=m'k .
In order to determine the left eigenvectors of the matrix a the substitution

f., 2new o || W
= 4.1a
|: fV:| { a)z 0 }|:V:| ( )
—— | A
f k q
f=kq, f =k (4.1b)
has been introduced. The equation of motion (2.1b) is transformed to
kg + k(m'k)g = km™p
f + km'f = km'p
1 0]l f 2 —1 f 2 - t
R o|-[2m p(t) 4.2)
0 1) f, 1) 0 f, @ 0Ol O
—— —_— [ ———
e f km™ f km™ p(t)

The corresponding eigenvalue problem is formulated assuming

f=xe", f=Axe™ (4.3)
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- (km%iejxo - (aT+}te)x:O (4.4)
—r
where
_ Y L 1 27]60 —
a' _(m lk) _kT(m l) =km 1_{ 2 0} (4.5)

due to the symmetry of the matrices k and m. The two eigenvalues 4,,, of (4.4) remain the
same - Eq. (2.4), but the corresponding complex conjugate eigenvectors are now

n¥iy1-n2
X120 =X 21X = [ w l (4.6)
1
The formulation
x"(a+4e)=0 — (@"+2ex=0 — (a"+4e)l,=0 (4.7)

shows that x represents here the left eigenvectors of the matrix a=m™k (respectively, the
right eigenvectors of the matrix ' =km™), i.e. x, =1, (j=1,2).
In this variant the modal matrix is defined without normalization by

ot =[; L]= (4.8)

w

lr)—iw/l—nz n+i1/1—nzl
®
1 1

The eigenvalue problem in the ,,left“ formulation (4.7) may be rewritten using the ¢" modal
matrix as:

aTol + pld =0 (4.9)
A
where A= [ I] (4.10)

represents the spectral matrix ofa’ . From Eq. (4.9) the diagonalization of the a" matrix and
the inverse relation can be developed:

a' = (p"-(—k)-(go")_l © —-A = (qp")_l-aT-(ga") (4.11)

The inverse matrix ((/)L)

w JI-n2—i
Ly-1 - 1 l iw " ”l 4.12
Wi i J1-n2+in (412)

1 .
is calculated now to:

(¢
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4.2 Modal decomposition of a multi-degree-of-freedom-system with damping

The state-space form of equations of motion (2.12) is transformed in two variants using the
substitution

F=K;Q, F=K;Q (4.13)
1) Q+MZ K, -Q=MZ-P (4.14a)
6 6

A

KGQ + KGMELKGQ = KGM(_;P
Hf_/ Hf_/

2) (4.14b)
F + KiMJF = K MJP

Because of the symmetry of M; and K we receive the relationship

i
Ko Mg =KL (MZ) = (M;KGJ —AT (4.15)

A

Here we need the right and the left eigenvectors of the matrix A, to be calculated from the
form (4.14a) resp.(4.14b):

(A+A4E)R; =0 resp. (AT+AE)Li=0 (4.16a-b)

The formulations (4.14a) and (4.14b) yield directly the relationship between an arbitrary j™
right and left eigenvector
L, =K: R, (4.17)

The right and the left modal matrix, respectively, are complete sets of the corresponding n
eigenpairs

R=[R,R: .. R,Ru (4.18a)
L=, L. ... L, L (4.18b)

The orthogonality property of the eigenvectors leads to
Yoy ) .

Y11

R'L =R"K¢R = (4.19)

ynn _

i Yo

Using the main diagonal components y,, from Eq. (4.19) the modal matrices R, L are nor-

malized with respect to the general stiffness matrix K :

-1 R S or-lof @ .. of o (4.20a)

V7w
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o -1, <1>L=[<I>1L ... O E)ﬁ] (4.20b)
Yk
Due to (4.19) and the chosen type of normalization (4.20) we receive the relationships
(@) - ®f =(@") -0 =E (4.21)
1 _ _
o =o' =l0) o (@) -( ) (4.22)

where E is a (2n x 2n) identity matrix.

The eigenvalue problem (4.16b) may be rewritten using the ®" - modal matrix:
(AT+AE)PE=0 - AT-@"+@"-A=0 (4.23)
where

A=diag}t,| (j=1...,2n) : spectral matrix

From Eq. (4.23) can be derived the diagonalization of the AT -matrix and the associated in-
verse relationship:

AT=@ . (-A)- (@) o -A=(@ )" AT.@ (4.24)
The modal decomposition of the system equations (4.14b) is based on the modal superposi-
tion relationship

F=®“ a b .. a b]=0"-B" (4.25a)

BL

where
B-=[a b .. a, b] :newmodal complex coordinates (4.25b)

The equations of motion (4.14b) are transformed into a set of 2n uncoupled complex equa-
tions:

AT
(@ )'EetB" + (@) (K MZ)@'B- = (@) AP (4.26)
1 __’11 1 _p!a_l_
- Pb1
1
~n Pan
~7n] | Pon |

-
pL

Each j-th pair of the n uncoupled equations (4.26) can now be transformed using Eq. (4.11)
(index (j) omitted):
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The free vibration frequency @'’ and the modal damping ratio ' for the j eigenpair
(/1(") =A +i4, Zm =4 —i4 ) are to be computed according to Eq. (2.4). The corresponding
matrices ¢, (¢)~! can be evaluated by Eq. (4.8), (4.12).

A purely real transformation basis Y, will be built up by combination of the complex
transformations (4.26) and (4.27):

1 [*1
W (™) |71 |
F= KG[V] = @ || =0l (W)X, =Y X,  (4.28)
((pL(n))_l lan YL
Yndy,

In the product of the two complex matrices @ -(¥, ), Eq.(4.28), the imaginary parts
cancel each other, the resulting transformation matrix Y is purely real — see Eq. (4.30). The

same applies to all “load” vectors [gL hL]T in Eq. (4.27).

Finally the equations of motion (4.14b) can be uncoupled by means of the transformation ba-
sis Y, into n SDOFS block equations in real arithmetic:

(Y ) E- Y- X (t)+ (Y ) -AT- Y, X (t)=(Y, )" -AT-P(t) (4.29)
1 27 1 % g
1 (w(l))z 0 Y1 hl(_l)
1 X, ol
PRONORT B AN h(")

(™ o
The components of Y, , which belong to the j™ eigenvector-pair, are the following two

columns - see (4.28), (4.12):
1 iw J1—n%—-in

1-n?l-iw J1—n2+in
==l —wel  (eWI-reln) -] @30)

The associated two components of the “load” vector from (4.29) are calculated - with re-
gard to (4.8) - to be fully real too:

[ 00 (v,)? ...]=[¢rL+i<I>iL o — id}] -
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] .

| .

| = (v) AP = w, (@4) 1 ATP = |2 (1 @D+ VT (@) ) [arp (431
L.J (@R)T 2(®R)T

4.3 Solution of the modal equations and back transformation

The solution of each j™" SDOFS block equation in (4.29) is performed eliminating first the
modal coordinate x¥ (index (j) omitted):

{1 o}m{an —}{X}{QLG)} (4.32)
0 1]y [« O]yl [h()

The second equation

x=-2L 4 (4.333)

w2 T o2

should be introduced into the first one:

J+2nwy+ w?y =—-w? g, +2nw h, + hy (4.33b)
The modal response y(t) is easy determined by step-by-step integration of Eq. (4.33b),

then the x(t) according to (4.33a). The final time series of the original n DOFs are calculated
by superposition of the modal coordinates in accordance to Eq. (4.28):

[\‘//V] = (Ke) " YL X, (4.34)
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5 NUMERICAL EXAMPLE

5.1 Structural system, stiffness and geometry data

¥ 10
4 12007 il
LAl
// 1oe 72l
[ ] 1000
7
] 50071
[ ]
30¢
el e 7
in " | 700
~ _ // Z
— x
© [ ] s00
B 7 )
400
4
/4 r 300
1
L7 | 3 VA 20
A .
| ! 2 /,V 108
LN T
= o >y o)
By

Fig. 1  Rotor blade beam model subjected to wind loads

The stiffness data of the blade thin wall cross sections have been calculated in [14]. The
generic aerodynamic blade geometry has been derived from real blade data.

The finite element solution is based on the numerical integration of the system of differen-
tial equations for the Bernoulli-beam. The reference axis of the beam model coincides with
the centre of the circular-section at the root — it is the real rotational axis of the rotor blade.
Thereby the differential equations and all cross section stiffness data are referred to this axis,
accounting for the eccentric mass application.

Fig. 2  Rotor blade sections at 2.0 m — thin wall cross section model
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5.2 Wind loads

The wind loads are calculated according to the formula for the aerodynamic lift force per
unit length of an aerofoil, see [13] p.59:

L =%p- c(r) w2 -¢, (5.1)

where: w . air velocity relative to the aerofoil
: air density = 1.225 [kg/m?]
c(r) :chord of the aerofoil

C, . lift coefficient C, = 2mr a = 27 (56 0) = 0.658,

the flow angle « is assumed to be 6.0 [deg]

The air velocity W is the vector sum of the rotational speed Q (assumed to reach 60 rpm in
the initial four seconds) and the wind speed u, incident on the aerofoil in accordance with the
Betz-theory:

W = J(n )2+ Gu)z where Q= (S27) in [rad/s] (5.2)

The wind speed time series u(t), used for calculation of the wind thrust force, is shown in
fig.3:
Windspeed u(t)

ettt =
4 6 8 10 12 14 16 18 20 22 24
time [s]

Fig. 3 Wind speed time series

The resulting wind thrust loads T(t) per unit length along the x-axis of the rotor blade can
be determined as function of the wind speed u(t). In the structural model the wind thrust
loads are acting as summarized nodal forces.
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Wind thrust at 12.5 m

Tivm; A
2000 -

1500 T

1000 T

500

0 t t t t t f ——+ f t t —+——
0 2 4 6 8 10 12 14 16 18 20 22 24
time [s]

Fig. 4 Wind thrust function acting on the rotor blade at 12.5 m

5.3 Relationships and data for the damping approach
Starting point of the computation are the equations of motion
M 0 ' D K{W]| |[P(t
V.V + = ® (5.3)
0 -K||V K 0}V 0
where P(t) is the nodal force vector, representing the wind thrust according to Sec. 5.2.

The system equations (5.3) will be solved applying the proposed modal analysis method
in Sec. 3 for two cases: non-proportional and proportional damping.

The lowest four free-vibration frequencies and associated periods for the undamped system
are calculated to

f, = 2.643 [s71] T, = 0.378 [s]

f, = 4.622 [s71] T, = 0.216 [s] (5.4
fo =7.942 [s7Y] T, = 0.126 [s] '
f, = 16.650 [s71] T, = 0.060 [s]

Stiffness proportional damping as a special case of Rayleigh damping has been assumed:
D, =K (5.5a)

where g ==1="2=0.000964s] (5.5b)

1

In Eq. (5.5b) the damping ratio n = 0.008 for the first natural period T, has been taken in
accordance with [13] p. 249.

The non-proportional symmetric damping matrix D, is build adding to the D,-matrix a
new matrix D,, which represents the aerodynamic damping. The formulation is based on a
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simple expression for the aerodynamic damping coefficient c,(r) per unit length, given in
[13], p. 247:

kg 1
sm

], where %L =27 (5.6)

1. . dcL
Cd(r)_zp Qr - c(r) da [ da

In accordance with Eq. (5.1), (5.2), the corresponding damping coefficients c;(r) along
the x-axis of the rotor blade are calculated to

roc() cqg()
[m] [m] [kg/s.m]

-0 0

13.2993
60.4513
97.3266
126.948
149315
164.428
172.286
172891
166.241,

—

ot

LA LR O e e

WO D O L L [

—_

oo =

[ )

[ e ]

[ A I I o e B O R
Lhhth e Lh Che s

The coefficients c,(r), which represent the aerodynamic damping, are active for vibration
in z-direction of the cross-section coordinate system, see Fig. 2. The associate symmetric
damping matrix for the Bernoulli-beam element is derived by analogy with the method used
to derive the finite element mass matrix, see [15]. Finally the symmetric system damping ma-
trix, Dyp, is assembled in a finite-element manner, including structural (proportional) and aer-
odynamic damping:

D,, =D, +D, (5.7)

5.4 Non-proportional damped system
We use here the matrix D, — Eq.(5.7). The vector of the first ten complex conjugate ei-
genvalue pairs of the matrix A=M¢ -K,, see Eq.(4.16), is

'~ 5.56181 +15.7652 i)
—5.56181 — 15.7652 i
—0.40981 = 29.0336
—0.40981 — 29.0336 i
—6.33460 + 492454 {
—6.33469 — 492454 {
—9.53814 + 104.542 (5-8)
—9.53814 — 104.542 {
—5.43041 = 105219 {
—5.43041 - 105.219
—20.7608 + 185.185 1
—20.7608 — 185.185 i
—22.1068 = 207.402 {
—22.1068 — 207402 i
—27.8796 +238.91 i
—27.8796-238.911
—45.8047 = 292379 1
— 458047 — 292379 1
—63.5216 = 353.962

—63.5216 —353.962 1§,
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The number of modes considered in the modal transformation is limited to the first four ei-
genvector pairs. The structural system in Fig. 1 has 54 DOF. The corresponding (108x8)
modal matrix ®¢ with stiffness normalized eigenvectors — Eq.(3.6a,b), is computed to (only

the first ten rows are printed)

-3491077=57110771 =349 1077 +57110774 96107 +1.89107 %0 961077 -189107% -3.851075+5431077] —3.85107%-54310771 -3.83107%-2.72107{ 383107 +2.72 107§
—441077-7211077 -441077+7211077% 121107%+239107%F 121107%-239107% -474107% 46910771 -474107%-691077i —513107%-34810771 —-513107%+348 1077
3331077 +585107%1 338107°-585107%1 2661076+7941077F 266107°-79410771 —814107° 22410761 —8.14107°-224107%F 153107 -57107%1 153107 +57107%
453107%+429107%1 4.53107-420107%F 8.181077+3.091077i 8.181077-3.091077i 3351077127107 3351077+ 12710755 121107* 92810778 1.21107F 9281077
—1341074-23 10770 —1341074 423107 105107 -3.13107%1 - 1.05107° +3.13 10751 3.19107F-9.05107%1 3.19107*+9.05107%1 -5.92107* 422510771 -5.92107*-225 107§

~1.74107%-285107%1 —174107%+285107% 48107%+948107%F 48107-948107% -2361077+272107%1 -2361077-27210"%1 -20107°-136107%i -201077+136107*}

6151077 -166107°1 —6.15107°=166107°1 0.00129-1.0107%§ 0.00129+10107%1 113107 =186107%1 113107 -186107%F -222107*-29107%; —222107* 229107
1391074 -849107%1 —1.59 1074 +849 10751  0.011-4.88 107§ 0.011-4881077F  233107%+497107%1 238107 -497107%1 -8.16107*-0.00269i —8.16 107* ~0.002691
0.00737 +0.00119 i 0.00737-0.001191 158107 +1.66107% 1 1358107 -1.66107% i -0.0157+598107%1  —0.0157-598 107%] 0.026 - 0.00105 § 0.026 +0.00105

20107%+19107%i  20107*-19107%i 359107°+136107°i 3591077 -136107°i —000147-538107°i —000147+538107°i 000524+3571077i  000524-3571077i

(5.9)

The matrix ¥~1 is now calculated in the case of four involved eigenmodes according to Eq.
(3.11), (3.4):

_ _1 —
(™)
(@)
-1 __ —
p-l= » =
(0®)
-1
(™)
"2 6857 —1.28491 35.194 +35.194 1 ] ] ] ] ] ]
26857+ 128491 35194 —35.1941 0 0 0 0 0 0
0 0 2.7322 —2.65611 78.236 + 78.2361 0 0 0 0
0 0 27322 +2.65611 78236 —78.2361 0 0 0 0
0 0 0 0 39601 —3.05741 17565 +175.651 0 0
0 0 0 0 39601 +3.05741 175.65—-175.651 0 0
0 0 0 0 0 0 55787 —4.64581 53889 +538891
0 0 0 0 0 0 55787 ~4.64581 53889538891

(5.10)

Finally the (108x8) real transformation matrix Y is computed according to (3.11) — here
only the first ten rows:

] 0.000002  0.000022 0 ] — 0000009 0 0.001258
] 0.000003  0.000028 0 ] —0.000012 ] 0.001608
0.000008 —0.000017 0.000001 —0.000005 —0.000028 0.000027 0.000067 —0.000011
0.000001 -0.000018 0 —0.000002 —0.000011 0.00004%  0.000053 —0.00025%9
Y = —0.000033 0000066 -0.000002 0000021 000011 —0.000103 —0.00025% 0.000027
] 0.000012  0.000111 0 ] —0.000047 —0.000001 0.00628

—0.000015 0.000058  0.000297 0000002  0.00003% -—0.000124 —0.00008 O0.013754

—0.000035 0.000337  0.00235 0.00002 0000079 —0.001052 —0.000202 0.125274

0.00181%9 -0.003317 0.000036 -0.001111 -0.005438 0.002459 0011388  0.001537
0000038 —0.000796 0.000008 —0.000051 —0.000501 0.002123  0.002276 -0.011014)
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(5.11)
After the modal transformation the time-dependent “load” vector is calculated to be a func-

tion of the wind speed time series, see Fig. 3 :

" 5788 47
1.359 17
[‘}gllggl 0.1244 12
- —yr.[P]= | (5.12)
gg(t) 1.734 u‘*1
hs(t) -32.534°
0.9771
—15.46 4,

The resultant four uncoupled SDOFS block equations from type of Eq. (3.10), prepared in
the form (2.23), are solved by step-by-step integration:

1 %1 [Pmo; of 1 [¥11 91
—w? Y1 I w? 0 I [ V1] |h1 |
a | oo _|_ w] eee — cee , (n:4_)
1 xn | Znn (,()n (,()1,21 | lan {gnj
~oil bl | i ol
X X
(5.13)
where [w;] = (16.7175 29.0365 49.6511 104.976 )
[ni] = (10.332693 0.0141136 0.127584 0.0908603 ) (5_14a,b)

The effect of the implied additional aerodynamic damping results evidently in the large
damping ratio n; = 0.33269 for the first free vibration.

The vibration-response has been determined in the time 0... 25.6 s, the time step length for
the applied Newmark integration method is 0.03665 s.

The time response of the modal coordinates y;(t), x;(t), (j = 1,2,3) are shown in the figures
5a-c:

vit)
y Jl ET

34

—

| ' | '

R - T U R )
! ! ! ! L ! ! ! ! !
T T T T T T T T T

} } } } } } } } } } } }
0 2z 4 & & 10 12 14 16 18 20 22 24
time [s]
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Fig. 5a Time response of the modal coordinates y, (t), x, (t) for the case “non-proportional damping”

®2(t
y2(0) O
A y A PR LT R PR - R T pe bl
yu.ua L 0.0 \ =+
0.1
0.02 'llhw 1 0z \
0s \1 TRl
0.01 I
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0.00 - 05
02 4 & 8 10 12 14 16 18 2,0 2 24 | |

time [s]
Fig. 5b Time response of the modal coordinates y, (t), x, (t) for the case “non-proportional damping”
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Fig. 5¢  Time response of the modal coordinates y;(t), x5 (t) for the case “non-proportional damping”

By a back transformation according to Eq. (3.11) the total response V(t) is obtained - see
Figs. 6, 7 (vibration components at the rotor blade tip node #10).

V2(t)- vibration (edgewise direction) ) . . -
time [s] V3(t)- vibration (flapwise direction)
[m] u_uuu“u 2 4 B 8 10 12 14 16 18 20 22 24 - [m] '

06 Mfl | f
-0.002 o wa “\ rM L\\Iﬁh
-0.004 t— 0s M\nl

-0.006 \ lMM »\. { E:Z / \ dﬂwﬂﬂ %ﬂww

-0.008 %
01
-0.010 f
[ 0.0 -
0 2z 4 6 B 10 12 14 18

18 20 22 24
time [s]

Fig.6 Total vibrations u,(t), us(t) [m] (y-and z-direction, see fig.2) at the rotor blade tip - node #10
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Phi2(t)- flapwise bending
Phi1(t)- torsion time [s]

002 4 6 8 10 12 14 16 18 20 2 24
[rad] A [rad]u.uu‘Il T o B o ol EECIES I

0.012 + o0z 4+
0.010 -0.04 +
0.008 1 o
0.008 +

-0.08 T
0.004 4 s

=010 1
0.002 1+

=012
0.000 R

0 2 4 B B 10 12 14 16 18 20 22 24 pqat

time [s]

Fig.7  Total rotation ¢, (t), @,(t) [rad] at the rotor blade tip (about x- and y-axis at node #10)

The vibration responses, computed by direct step-by-step integration of the equations (5.3),
are practically identical to those in Fig. 6,7.

5.5 Proportional damped system
In this case we use the derived symmetric damping matrix D, — Eq.(5.7). The first ten low-
est complex conjugate eigenvalue pairs, resulting from Eqg. (2.13), are now:

' —0.132832 + 16.6035 1)
—0.132832 - 16.6035
- 0406268 +29.0352 1
- 0406268 —29.0352 1
—1.19966 + 498844 i
—1.19966 — 49 8844 i
—5.27314 + 104483 i
—527314 - 104.483 i
—5.39463 + 105.676 1

—5.39463 — 105 676 i (5.15)

—16.7361 + 185.622 1

—16.7361 - 185.622 1

2056 +292.945 1
22056 —292.945 i
~354206 i
| —62.3277 - 3542261 |

The corresponding (108x8) @; modal matrix — Eq. (2.18), comprises the first four com-
plex conjugate eigenvector pairs, normalized with respect to the stiffness matrix — see
Eq.(3.6a,b). In order to verify the derived relationship for the constant phase lag, see (3.15),
we compute this ratio for all components of the involved (®, + i®;)? (j = 1,...4) eigen-
vectors (for instance the first ten rows only):

"—1.01613 —1.02838 —1.04828 —1.1063)

-1.01613 -1.02838 —1.04928 —1.1063
-1.01613 -1.02838 —1.04928 —1.1063 - 7

-1.01613 —1.02838 —1.04928 —1.1063 I'Diﬁf’ 1+27; ’1—77]2-

—1.01613 —1.02838 —1.04928 —1.1063 | > —1.02838 =——, (=1,..49)

- 1.01613 —1.02838 —1.04528 —1.1063 —1.04528 2n%-1

- 101613 —1.02838 —1.04928 —1.1063 . —1.1063 (5_16)
-1.01613 -1.02838 —1.04928 —1.1063

-1.01613 -1.02838 —1.04928 —1.1063

,—1.01613 —1.02838 —1.04528 —1.1063,

The corresponding damping ratios n; are computed in accordance with Eq. (2.4b).
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The (108x8) real transformation matrix Y, computed in regard with Eq. (3.11), (3.12), has
now the form (only the first twenty rows are printed):

0 0 0.000022 0 0 0 —0.000053 0

0 0 0.000028 0O 0 0 —0.000068 0
0.00000% O 0.000001 0 —0.000028 0 0.00005 O
0.000002 O 0 0 —0.000011 O 0.000038 O
—0.000035 0 —0.000003 0 0.00011 0O -0.000195 0
—0.000001 0 0.000111 0O 0 0 —0.000265 0
—0.000017 0 0.000257 0 0.00003% 0 -0.000642 0
—0.000053 0 0.00254% 0 0.000082 0 -0.003423 0
0.001935 0 0.000051 0 —0.005447 0 0.008771 0

Y = 0.000065 O 0.00001 O —0.00[34?9 0 0001632 0 (517)

—0.002448 0 —0.000063 0 0.006585 0 —0.010006 0
—0.000067 0 0.00314 0 0.00009% 0 -0.006234 0
—0.00004 0 0000568 0 0.000073 0 -0.00052 0
—0.000223 0 0.005%05 0 0.000305 0 -0.017838 0
0.007945 0 0.000182 0 —0.01%87% 0 0.027365 0
0.000184 O 0.000025 0 —0.001282 0 0.003%13 0
—0.005433 0 —0.00011 O 0011877 0 -0.0125%14 0
—0.000156 0 0.006512 0 0.00018 0 —0.009482 0
—0.000067 0 0.000826 0 0.000081 0O —0.000752 0
 —0.000542 0 0.022556 0 0.00058 0 -0.031471 0

The time-dependent “load” vector in the general modal transformed equations (2.23) is
now calculated according to Eq. (3.13):

" 5.691 o
0

[91 (t)] 0.1578 12
|h ()] :

- = 1.864 12 (5.18)

ga(t) 0

hy(t) 0.8032 1
.0

The time dependence is expressed through the time series for u(t) in fig. 3. Note that in
the special case of proportionally damped system x; = y;, i.e. h;(t) = 0.
In the resultant four uncoupled SDOFS block equations from type (3.10), the free frequen-
cies and the modal damping ratios are:
[w;] = (16.604 29.0381 49.8988 104.616 )
[,]= (0008 0.0139909 00240418 0.0504049 ) (5.19a,b)
After step-by-step integration of the four modal equations, the time series of the modal co-

ordinates x;(t), y;(t), (j=1...4), are obtained — Fig. 8:
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Fig. 8 Time response of the modal coordinates y;(t), x;(t) (j = 1,2,3) for the case “proportional damping”

The total responses V(t) are computed by a back transformation according to Eq. (3.11) — see
Figs. 9a-d (here in the time range of 0 — 10 sec):
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V2(t)- vibration (edgewise direction)

[m] A
0.002
0.000 ) ( . 1;-—-
0.002 \\ ti ..I‘f s]
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o N f I I
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dll

-0.012
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-

T
il
[l

I

-0.014

Fig 9a - Total vibration uz(t) [m] at the rotor blade tip (y-direction at node #10) for the case “proportional
damping”

W3(t)- vibration (flapwise direction)

: il hﬂnﬂm
AV

V I
02
0.0 {i—
o 1 2 3 4 5 6 7 8 9 10
time [s]

Fig 9b - Total vibration u3(t) [m] at the rotor blade tip (z-direction at node #10) for the case “proportional
damping”

Phi1{t)- torsion
rad] A

) AI\AIHU Iy
/JU VIV UU

0.005
0.000 —
o 1 2 3 4 5 6 7 8 9 10
time [s]

Fig 9c - Total torsion (pl(t) [rad] about x-direction at node #10 for the case “proportional damping”
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Phi2(t)- flapwise bending

[I'Elj] u_uz_i_ time [S]
& 9 10

0.00 I t t T T
-0.02 1
-0.04 1
-0.06 1
-0.08 1
-0.10 1
-0z 1
-0.14--
-0.18 1

-0.18 —

Fig 9d - Total rotation ¢, (t) [rad] about y-axis at node #10 for the case “proportional damping”

The time series for the DOF calculated by direct step-by-step integration of the equations (5.3)
are practically identical to the vibrations shown in Fig. 9a-d. The only difference occurs in the
torsional vibration, see fig.10. The deviations may be explained by the absence of a torsional
eigenmode in the four employed eigenvectors in the modal matrix.

Phi1{t)-torsion

[rad] ]

0.005 T
0.004
0.003
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Fig 10 - Total torsion (pl(t) [rad] at node #10, calculated by direct step-by-step integration
(“proportional damping”)

6 CONCLUSIONS

e A general modal decomposition method for MDOFS with non-proportional damping is
presented in three variants. In general, all of them are based on the complex eigenvalue
solution of a structural model with symmetric non-proportional damping matrix. The
complex conjugate eigenpairs — eigenvalues and the corresponding eigenvectors — are to
be computed first for the “state space” form of the equations of motion. By combining of
two complex transformations, connected to the eigenvalue problems of the SDOFS and
the MDOFS, three different kinds of a modal transformation matrix Y in real space are
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developed analytically to perform a modal decomposition of the equations of motion in
real arithmetic.

e The first variant of the suggested procedure is described in Sec. 2. The real transfor-
mation matrix Y is assembled employing the right complex conjugate eigenvector pairs,
normalized in both the SDOFS and MDOFS cases with respect to the corresponding mass
matrix. The difference in the second variant, described in Sec. 3, is the normalization of
the both modal matrices with respect to the corresponding stiffness matrices. In Sec. 4
has been presented the third variant, based on both the right and the left complex eigen-
vector pairs. In this version the complex conjugated eigenvectors for the MDOFS are
normalized with respect to the stiffness matrix, the “left” modal matrix for the SDOFS
don’t need normalization.

e All variants of the presented modal procedure retain the common advantages of the clas-
sic modal decomposition of the equations of motion. Usually an uncomplete modal trans-
formation should be performed by use of a few eigenmodes. Employing only the lowest
few (k) eigenvector pairs in the Y -basis (k<<n) is leading with sufficient numerical accu-
racy to the total time response of all n DOF. The equations of motion are transformed into
k uncoupled SDOFS block equations.

e The k uncoupled modal equations are easily numerically integrated like a SDOFS-
equation — the result is the time response of the modal coordinates. Finally a back trans-
formation to the original DOF has to be performed using the suggested new real Y —basis.

e The applications of the first and the second variants of the suggested method to the spe-
cial case of proportionally damped system (employing a Rayleigh damping matrix) is
leading to a simple analytical expression for the constant ratio z"—((’;;for all k" DOF of
each considered eigenmode (®, + i®;). This is an indirect proof of the statement for
synchronous free vibrations in the case of proportional damping. For more detailed
investigations on this topic see [5].

e In Sec. 5 a numerical example — vibration of a rotor blade with 54 DOF - demonstrates
the performance of the presented modal procedure in the variant of Sec. 3 for two cases —
non-proportional and proportional (Rayleigh) damping. In the first variant the damping
matrix of the system contains a stiffness-proportional part and a simple approximated
aerodynamic damping part. In the second variant the formula for the constant phase of the
resonance modes is verified numerically.

e Real life applications of the proposed modal analysis method and possible numerical
complications are discussed more widely in [4], [5]. The present paper is a briefly over-
view of some possible variants of the suggested new modal transformation procedure in
real space for viscous non-proportionally damped structural models.
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