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Abstract. Multi-layer elastomeric bearings are used as common means of isolation with a 
large number of applications over the last 20 years in infrastructure assets. In this regard, 
seismic isolation is one of the most promising design philosophies for protecting structures 
against the catastrophic effects of earthquakes. Isolated bridges should be  designed to re-
spond with minimal or no damage (i.e. essentially elastic behavior). Additionally, in isolated 
bridges seismically induced damage is expected to be concentrated within the isolators, which 
are designed to be easily replaced. Thus, isolated bridges are resilient structures as their de-
sign is aligned to the principles of resilience, i.e. low-damage and quick restoration. Elasto-
meric bearings can be subjected to large axial loads and /shear displacements during strong 
earthquakes, which may also induce buckling effects. The recent Forcellini and Kelly (2014) 
model for elastomeric bearings allows to take into account large deformation response of a 
bearing when buckling occurs. 
This paper aims to identify the accuracy of  this theory using experimental results and de-
tailed numerical simulations carried out on ABAQUS. The finite element (FE) model has been 
reproduced with a layered system able to represent the alternating steel and rubber layers 
and the bolted connections. The presented FE model can be used as a powerful tool for pre-
dicting the non-linear behaviors registered during the lab tests. This study will provide new 
insights useful to designers, engineers and consultants. 



1 INTRODUCTION 

Multi-layer elastomeric bearings have been extensively employed for pier and abutment 
protection against earthquakes ([1], [2], [3] and [4]). In this regard, base isolation decouples 
the structure from the ground by intentionally concentrating seismic energy dissipation within 
the isolation system. Isolated bridges are designed to respond with minimal or no damage (i.e. 
essentially elastic behavior). Additionally, in isolated bridges seismically induced damage is 
expected to be concentrated in the isolators, which are designed to be easily replaced. Gener-
ally, the bearings are used in the case of compression and somewhere in presence of shear 
forces. Therefore, it is necessary to have an in-depth knowledge of the behavior of such de-
vices under these loading conditions ([5] and [6]). In this regard, elastomeric bearings can be 
subjected to large axial loads and lateral/shear displacements during strong earthquakes, 
which may also induce buckling effects. The [8] model is used to illustrate the influence of 
large deformations on the interaction between horizontal and vertical loads and assessing the 
post-buckling behavior of these bearings. In particular, the previous study was conducted with 
the aim to extend the original linear theory of multilayered elastomeric bearings by replacing 
the differential equations by the algebraic ones. The model has been recently performed in 
order to study some applications, [4]. In this background, this paper aims to verify this theory 
using experimental results and detailed numerical simulations on ABAQUS. Initially, test re-
sults are taken by the ones carried out at University of Surrey. These results have been com-
pared with the developed theory. Secondly, numerical simulations have been performed by 
applying ABAQUS in order to validate both the laboratories tests and the theory. In particular, 
the actual state of mechanical computations allows to investigate non-linear behaviors with 
sophisticated numerical tools ([9] and [10]). The finite element (FE) model has been repro-
duced with a layered system able to represent the alternating steel and rubber layers and the 
bolted connections. Therefore, the paper aims to assess the theory potentialities in performing 
non-linear behavior of the elastomeric bearings. In particular, as shown by [11], the rotation 
experienced by the top and the bottom support can significantly influence the lateral behavior 
and cannot be neglected. In particular, the original theory has been modified in order to take 
into account G reduction and the rotation. The proposed modifications will be developed in 
order to provide new design considerations for designers, engineers and consultants all over 
the world. 

2 CASE STUDY 

In this paper, the multilayer elastomeric bearing has been taken from the ones tested experi-
mentally at University of Surrey and numerically in recent research [7, 10] shown in Figure 1 
and Table 1, where the geometry of the reference bearing is described in details.  
The circular steel-laminated elastomeric bearing consists of thirty layers of a hyperelastic ma-
terial with 4 mm thickness each, alternating with twenty-nine steel shims with thickness of 3.1 
mm each. At the top and bottom of the isolator there are two anchor plates with 28 mm thick-
ness each. The total thickness of the benchmark bearing is 265.9mm. The diameter of the 
elastomeric layers and the steel shims is 700 mm and the one of the anchor plates is 1000mm. 
There is a hole, at the centre of the reference bearing, with a diameter of 15mm. 
The bottom anchor plate of the model is fixed. Shear displacement of 450mm and simultane-
ous axial pressure is imposed to the top anchor plate of the bearing. Initially, the bearing was 
subjected to one full cycle of shear corresponding to a shear strain of 375%, thus the shear 
displacement is 450 mm. Figure 2 shows the results as detailed in [6]. 
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Figure 1. (a) 3D view and (b) vertical section of the benchmark steel-laminated elastomeric bearing  
 
Table 1. Geometry of the reference bearing [7] 

 notation (unit) Value 
diameter of the elastomer Dr (mm) 700 
diameter of the anchor plate  DAP (mm) 1000 
diameter of the hole  Dh (mm) 15 
area of the elastomer layer Ab (mm2) 384845 
total height of the bearing T (mm) 265.9 
elastomer layer thickness tr(mm) 4 
number of elastomeric layers nr 30 
total elastomer thickness Tr (mm) 120 
single steel shim thickness ts(mm) 3.1 
number of steel shims ns 29 
total steel shim thickness Ts(mm) 89.9 
single anchor plate thickness tAP(mm) 28 
number of anchor plates nAP 2 
total anchor plate thickness AP (mm) 56 

 

 
Figure 2. Response of the reference steel-laminated elastomeric bearing for variable axial loads (shear 
strain 375%) for one cycle of loading [7] 



3 THEORETICAL MODEL 

The two-spring model (shown in Fig. 3) consists of two rigid elements in the shape of 
tees, connected by moment springs across hinges at the top and bottom and by shear springs 
and frictionless rollers at mid-height, [8]. The deformation variables shown are the shear dis-
placement (s), the relative rotation (θ) and the horizontal displacement (v). The vertical load is 
P while the horizontal load at the top of the column is F. The kinematic at the top of the col-
umn is thus calculated following the formulation by [8]. 

Fig. 4 shows the results in terms of s/h, v/h, δ/h, θ for variable values of the axial load 
(2MPa and 14 MPa), as calculated by the theoretical model. It is possible to see s/h and v/h 
are not extremely sensitive to  the values of p. In particular, the axial load affects the stiffness 
that decreases with increasing axial load, as shown in [9].   
Fig. 5 shows the shear force – displacement relationship for variable values of the axial load 
(2MPa and 14 MPa), as calculated by the theoretical model (red line), in relationship with the 
ones predicted by the numerical simulation (blue line) [7]. It is possible to see that the dis-
placements increase linearly with the lateral shear force.  

 
Figure 3 – Two-spring model [8] 
 

4 SENSITIVTY ANALYSIS 

In order to model the non-linear behavior, a sensitivity analysis has been performed on 
two important parameters. First of all, the shear modulus G in order to take into the reduction 
of the stiffness when the shear strain increases. The second parameter that has been studied is 
the top support rotation. It has been introduced in order to assess how its influence on the lat-
eral behavior.  

4.1 G modulus  

G reduction when the shear strain increases has been investigated in several research, 
such as [12]. In this research, the model used in [13] was modified by using an instantaneous 
apparent shear modulus as a function of the shear strain obtained from the tests results they 
performed. In order to consider non-linear effects, [13] proposed a nonlinear formulation for 
G calibrated from the laboratory results and varying the horizontal tangential stiffness, as 
principal variable. In this paper, G has been varied by considering the loading conditions. In 
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particular, both the shear force (F) and the axial pressure (p) have been introduced inside a 
formulation: 

( ) init

p

G
F

FpG ⋅























⋅−=
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2

100
1.01,     (1) 

Equation (1) leads to linear curves in cases of very low axial load (for example in case 
of p= 2 MPa). Figure 6 shows the comparison between the numerical simulation outputs (blue 
line, [7]), the theoretic model [8] (with constant G, in red) and the modified G (with equation 
1, in green). It is shown that the theoretical approach and the numerical results improves when 
equation (1) is implemented inside the theory. This happens particularly in case of bigger val-
ues of p (such as 14 MPa). The model even with the formulation for considering the variation 
of G does not allow to consider conditions of unloading. 
 

 
Figure 4 – Two-spring model results in terms of s/h, v/h, δ/h, θ 
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Figure 5 – Shear force-displacement curve  (axial load: 2 MPa and 14 MPa [7]) following [8] 
 

Figure 6 – Shear force-displacement: comparison between the numerical simulation outputs (blue line, 
[7]), the theoretic model [8] (constant G) and the modified G (with equation (1)) for axial load: 2 MPa 
and 14 MPa. 

 

4.2 Rotation  

Following the approach  shown by [11], the rotation experienced by the top and the 
bottom support may influence significantly the lateral behavior and hence this should not be 
neglected. In this regard, the original formulation [8] has been modified by introducing the 
applied rotation at the top end plate (named α and positive if the same sense as θ) inside the 
previous formulation: 

 
)cos()sin( αθαθ +⋅++⋅= shv      (2) 

[ ] )()cos()sin(])cos([ αθαθαθλαθ +=+⋅++⋅⋅++⋅ fpp   (3) 
     

Where: 
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and: 
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    ( SEI bending stiffness)     (5) 

sS AGP ⋅= ( SGA effective shear stiffness)     (6) 
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Figure 7 and 8 show the effects of introducing rotation of the top support. In particular, 
Figure 7 shows the results when α is set to increase linearly with the horizontal shear force. 
Several values of initial rotation have been considered: 0.5, 1.0, 1.5 and 2.0 rad and named 
LIN-0.5; LIN-1; LIN-1.5; LIN-2). The results show that the first part of the curve fits with 
the experimental ones. 

Figure 8 shows the comparison between the original theory (blue line), the previous 
LIN-1.5 case (black line) and the results when α is set to increase with a bi-linear behavior 
(red line). In particular, the red line shows that if after the plateau the rotation is maintained 
constant (elastic – perfectly plastic behavior), the two curves reach a proper agreement.  

The model does not allow to consider conditions of unloading as well. 
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Figure 7 – Shear force-displacement curve (axial load: 14 MPa [7]): following [8] and linear rotation 
(initial: 0.5, 1.0, 1.5, 2.0) of top support. 
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Figure 8 – Shear force-displacement curve (axial load: 14 MPa [7]): following [8], linear (initial rota-
tion: 1.5 rad) and bilinear rotation of top support. 



5 CONCLUSION 

The paper aimed to apply the theoretical approach [8] in order propose a new model 
able to improve the description of non-linear behaviour of the bearings. In this regard, two 
important parameters have been varied and implemented inside the original formulation. First, 
a formulation that allow to vary G has been proposed. Secondly, the effect of rotation of the 
supports have been considered. The non-linear behavior shown in in numerical simulations [7, 
10] was reproduced with two sensitivity analyses. The results show how a more developed 
model needs to include both the reduction of G and the effect of the rotation. Future compari-
sons on more bearings need to be considered.    
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