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Abstract. In this work, we present two sub-categories of models for reproducing the mechan-
ical response of high damping rubber bearings, which is a base isolation system that is com-
monly used for buildings in seismically-prone regions of the EU. These are the trilinear 
models that have evolved from the more standard group of bilinear models. These trilinear 
models are built by combining linear and nonlinear elastic springs, as well as sliders, while 
the connectivity of these elements can be either in series or in parallel, which yields the two 
basic sub-categories of first type and second types. The best fit with experimentally obtained 
results involving time-harmonic tests on a commercial high damping base isolator at shear 
amplitudes up to 200% is achieved by the trilinear hysteretic system of the first type. Future 
extensions to bi-directional horizontal motion and to time-varying vertical loads is currently 
under consideration. 
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1 INTRODUCTION 

High damping rubber bearings (HDRB) have been used for seismic isolation of structures 
worldwide since the 1980’s. Given the highly nonlinear material behavior of these devices, no 
single mathematical model can capture every aspect of their dynamic response [1]. Issues and 
uncertainties involved in the characterization of their mechanical behavior are coupled bidi-
rectional horizontal motion, coupling of vertical and horizontal motion, strength and stiffness 
degradation during cyclic loading, and variation in critical buckling load capacity due to lat-
eral displacements. Elementary mechanical models for base isolators comprise (a) a spring to 
model the elastic response, (b) a plastic slider for time-independent plasticity and (c) a dash-
pot for viscosity [2]. The simplest model to describe the time-independent plasticity is the bi-
linear hysteretic model (BHM), which has been used for decades now and combines springs 
with a plastic slider. In addition to the BHM, smooth hysteretic models have been developed 
[3]. Furthermore, there exist two basic BHM sub-formulations [1,4]. However, materials like 
high damping rubber bearings (HDRB) exhibit hardening behavior at large strain amplitudes. 
In order to account for this effect, an extension of the BHM was developed as the trilinear 
hysteretic model (THM) [5,6]. Apart from use for the simulation of the shear behavior of 
HDRB, the THM has been used also for single, double and triple friction pendulums, as well 
as for partition anti-seismic wall elements [7,8]. The present work investigates two possible 
variations of the THM that account for either hardening or softening behavior and highlights 
their differences. To this end, a set of cyclic shear tests on a spare HDRB specimen from the 
Solarino, Italy building base isolation project [9] are used to validate and subsequently com-
pare these models in terms of their accuracy. 

2 MECHANICAL FORMULATION FOR QUASI-LINEAR HYSTERETIC MODEL 

As an extension of BHM to THM, we have the THM1 and THM2 variations in Figs. 1 and 
2, respectively [1,6]. More specifically, the parent element BHM1 of THM1 that consists of a 
linear elastic spring of stiffness 1m

ek  (element 1) connected in series with a parallel system, i.e., 

a plastic slider with characteristic force 1m
sf  (element 2) and a linear elastic spring of stiffness 

1
1

m
hk  (element 3), is modified by replacing element 3 with a trilinear elastic spring. The param-

eters now needed to describe this trilinear elastic spring (element 3) are the stiffnesses 
1

1
m
hk , 1

2
m
hk and the characteristic displacement 1m

cu . A positive displacement 1m
cu denotes change of 

slope in the spring from 1
1

m
hk  to 1

2
m
hk  and vice-versa for positive displacements 1m

hu  , while a 

negative displacement 1m
cu  denotes the change of slope between 1

1
m
hk  and 1

2
m
hk , for negative 

displacements 1m
hu . In the case of THM2, this new three-parameter trilinear spring (element 3) 

has stiffnesses 2
1

m
hk , 2

2
m
hk  characteristic displacement 2m

cu . As in the previous case, a positive 

displacement 2m
cu denotes change of slope in the spring from 2

1
m
hk to 2

2
m
hk  and vice-versa for 

positive displacements u , while a negative displacement 2m
cu denotes the change of slope 

between 2
1

m
hk  and 2

2
m
hk  for negative displacements u . The relationships established between 

the parameters of the mathematical model (
0 1 2, , , ,y yhk k k u u ) and those used for the corre-

sponding mechanical ( 1 2, , , ,e h h c sk k k u f ) one are presented in Table 1 for both THM. Further-

more, the relationships between the mechanical parameters of the two systems are presented 
in Table 2, the compatibility equations are presented in Table 3, the equilibrium equations in 
Table 4 and finally the constitutive equations in Table 5. In the mathematical model, stiffness 

0k  corresponds to the elastic phases, stiffness 1k  corresponds to plastic phase 2, and stiffness  
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Table 1: Relationships between mechanical and mathematical parameters for THM 
 

THM1 1m
ek  1

1
m
hk  1

2
m
hk  1m

sf  1m
cu  

THM2 2m
ek  

2
2

1 2 2
1

m
m e
h m m

e h

k
k

k k
 

2
2

2 2 2
2

m
m e
h m m

e h

k
k

k k
 

2
2

2 2
1

m
m e

s m m
e h

k
f

k k
 

2 2 2
2 1

2 2

m m m
m e h s
c m m

e e

k k f
u

k k


  

 

Table 2: Relationships between the mechanical parameters of THM1 and THM2 
 

Model THM1 THM2 
u  1 1m m

e hu u  2 2m m
e hu u  

 

Table 3: Compatibility equations for the THM 
 

Model THM1 THM2 
f  1 2 3e e ef f f   1 3 2 3e e e ef f f f    

 

Table 4: Equilibrium equations for the THM 
 

Model THM1 THM2 

1ef  1 1m m
e ek u   2 2 2

1
m m m
e h ek k u  

2ef  0hu    1 1sgnm m
s hf u   2 2sgnm m

s hf u  

2ef  0hu   1 3e ef f  1ef  

3ef  *
h cu u  1 1

1
m m
h hk u  2

1
m
hk u  

3ef  *
h cu u      1 1 1 1 1 1

1 2 sgnm m m m m m
h c h h c hk u k u u u       2 2 2 2

1 2 sgnm m m m
h c h ck u k u u u   

 

Table 5: Constitutive equations for the THM 
* For THM2 replace *

hu  with u  

 

Model THM1 THM2 

hau   1 1 1 1 1
2 1

1 1
2

m m m m m
e a s c h h

m m
e h

k u f u k k

k k

  


 

2

2 2
1

m
s

a m m
e h

f
u

k k



 

dW  1 14 m m
s haf u  2 24 m m

s haf u  
 

Table 6: Energy dissipation over a cycle of amplitude au  for the THM1 and THM2 
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2k  corresponds to plastic phases 1 and 3 (see Figs. 1 and 2). In the case of THM2, there is an 

additional additional elastic phase described by stiffness 01k  (see Figs. 2(e)).  The yield dis-

placement is denoted as yu , the second yield displacement is denoted as yhu , the yield force 

at yhu  is denoted as yhF , while the characteristic strength at zero displacement is denoted as 

Q  and finally the yield force at 
yu  is denoted as yF .  The differences between these two sub-

categories of models are as follows: 
 

 
 

Figure 1: Trilinear hysteretic model labeled THM1 

 
(a) THM1 exhibits three plastic phases (1,2,3) and one elastic phase with slope equal to 

1
0

m
ek k , see Fig. 1. On the other hand, THM2 also exhibits three plastic phases (1,2,3) and 

two elastic phases according to the displacement amplitude. 

(b) The change of slope in the THM2 plastic phases occurs at displacement yhu  for 0u   and 

at yhu  for 0u  . In THM1, the change of slope in the plastic phases occurs at displacement 
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yhu  for 0u   and at yhu  for 0u   during the loading ( 0uu  ), and at displacements 

2yh yu u  for 0u   and at 2 y yhu u  for 0u   during the unloading phases ( 0uu  ).  

(c) The dissipated energy over a cycle of amplitude au  is denoted as dW  in both THMs and 

presented in Table 6, where hau  denotes the displacement hu  at displacement amplitude equal 

to au . In order to have a dissipative system, hau  and subsequently dW  need to be positive.  

 

 
 

Figure 2: Trilinear hysteretic model labeled THM2 

 
We assume that the energy dissipated in the THM1 is t

dW  at amplitude au  , and is larger 

than the dissipated energy in the BHM1 ( b
dW ): 
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Note that for the bilinear case 1 1
1 2

m m
h hk k  and 

1 1
1

1 1
1

m m
m e a s
ha m m

e h

k u f
u

k k





. For THM1 to account for 

larger dissipated energy than the BHM1, the following inequalities must be satisfied in terms 
of the mechanical and mathematical parameters, respectively: 

 

    1 1 1 1 1 1 1
2 1 1 0m m m m m m m

h h e a c s h ck k k u u f k u       (2) 

 

  1 2 0a yhk k u u    (3) 

 
For all THM 

a yhu u , implying that term (
a yhu u ) is positive. For THM1 to account for 

larger energy dissipation as compared to BHM1, the inequality 
1 2k k must also be satisfied. 

This last inequality shows that the THM1 can dissipate larger amounts of energy in compari-
son with the BHM1, but only for softening cases (

1 2k k ). In the case of hardening (
1 2k k ), 

the energy in THM1 decreases as compared to BHM1. This outcome can be explained physi-
cally, by realizing that the dissipation of all systems is related only to element 2, namely the 
plastic slider. As element 3 of THM1 becomes stiffer in the case of hardening, it allows for 
smaller displacements hu  in the plastic slider and therefore the dissipation of the system de-

creases. The opposite is true for the softening case.  
It is also of interest to point out that each of the components of the THM2 is a particular 

case of the THM1 formulation. More specifically, THM1 can be simplified to a trilinear elas-
tic spring for 1 0m

sf   and 1 1 1
1 2,m m m

e h hk k k  in terms of mechanical parameters, and in terms of 

mathematical ones with 0yu  and 0 1 2,k k k , see Fig. 3(a). In this case, element 1 of THM1 

will be extremely stiff to account for any deformation and will be neglected, while element 2 
will not account for any dissipation ( 1 0m

sf  ) and will also be neglected, so the system will 

behave linearly. The relation between mechanical and mathematical parameters (by taking 

into account that 0 0 0 1

0 1 0 2 0

1
k k k k

k k k k k



 
   , see Table 1) is the following: 1

1 1
m
hk k , 

1
2 2

m
hk k  and 1m

c yhu u , which results to a three-parameter system. Let us finally consider the 

stiffness of element 3 of the THM1 to be zero, namely 1 1
1 2 0m m

h hk k   and in mathematical 

terms 1 2 0k k  , see Fig. 3(b). In this case, the THM1 will behave like any elastoplastic el-

ement and the relation between mechanical and mathematical parameters will be 1
0

m
ek k  and 

1
0

m
s yf k u

 (see Table 1), which results in a two-parameter system. 

 

3 PARAMETER IDENTIFICATION USING HDRB CYCLIC SHEAR TESTS 

In this section, the third cycle of a set of cyclic shear tests that were conducted on a com-
mercial HDRB isolator from the Solarino project at the University of Basilicata in Italy [9] 
were used for the parameter identification using either THM1 or THM2. The geometrical 
characteristics of the HDRB are given in Table 7. The cyclic shear tests were conducted under 
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a compressive stress of 6 MPa and at a frequency 0.5 Hz , for ten different strain amplitudes 

varying from 0.05  to 2  . In parallel, cyclic tests at different strain amplitudes ( 1.20   

and 2.00  ) at variable frequencies (from 0.006 Hz  to 0.83 Hz ) were implemented to in-

vestigate the effect of rate-dependence of the bearings. The tests showed that the HRDB isola-
tor can be assumed rate-independent in this range of frequencies.  
 

 
 

Figure 3: Simplifications of THM1: (a) a trilinear elastic spring and  
(b) an elastoplastic element 

 

External diameter (mm ) 500 
Diameter of steel plates D (mm)  490 

Thickness of steel plates (mm) 3 
Number of rubber layers  12 

Rubber layer thickness riT (mm) 8 

Total rubber thickness rT (mm) 96 

Cross section area rA (mm2) 188574.10 

Total height (mm) 169 
Primary shape factor 1S  15.31 

Secondary shape factor 2S  5.10 
 

Table 7: Geometrical characteristics of the HDRB isolator 
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Next, two different rate-independent parallel models are used to describe the cyclic shear 
tests, one being the THM1 and the other THM2. The identification procedure that was used 
for the definition of the parameters is the CMA-ES algorithm [10]. In Table 8, the identified 
mathematical parameters of the THM1 system are presented along with the corresponding 

mechanical formulations. The identification error 2e is defined as follows: 
 

10
0 02

1 0 0

,

,

i i i i

i i i

F F F F
e

F F

 


 
 (4) 

 

where 0iF and iF are the measured and computed force vectors at ten different strain ampli-

tudes, and ,A B  is the inner vector product. Nine THM1 components are connected in paral-

lel to describe the shear behavior of the HRDB, but some of them represent simplified 
versions of THM1, see Fig. 3. Specifically, we have the trilinear elastic spring (components 1, 
2 and 3) and the elastoplastic element (components 8 and 9). 

We note that the trilinear elastic springs (components 1, 2 and 3) are hardening springs   
( 2 1k k ) accounting for the hardening behavior of the device at higher strain amplitudes, see 

Fig. 4(a). On the other hand, components 4, 5, 6 and 7 give softening behavior ( 2 1k k ), 

while in all of these cases 
2k is negative, see Figs. 4(b-e). These four components are respon-

sible for describing the increase of dissipated energy as the strain amplitude increases. This 
combination provides a better description of the behavior during the loading ( 0uu  ) and un-
loading ( 0uu  ) paths. Additionally, elastoplastic elements (components 8 and 9) describe 
the energy dissipation for small strain amplitudes due to their small yield displacement yu , 

see Fig. 4(f). Finally, Fig. 5 gives a better representation of the comparison of the THM1 sys-
tem with the experimental results at each level of strain amplitude separately, and clearly 
shows an almost perfect fit between simulated and recorded curves. 

The total number of parameters for the THM1 system is 33 and the identification error is 

rather small at 2 2.50%e  . Six THM2 components are connected in parallel to describe the 
shear behaviour of the HDRB experiment, and the identified mathematical parameters are 
presented in Table 9, along with the corresponding mechanical formulations. Component 1 
has softening behavior ( 2 1k k ), while the remaining components show hardening behavior 

( 2 1k k ), see Table 9. Components 1 and 2 have a small yield displacement yu and describe 

energy dissipation for small strain amplitudes, where the rest of the components remain in the 
elastic range. In Fig. 6, the overall behavior of the THM2 system is compared with experi-
mental data. The comparison shows that the system fails to describe the larger energy dissipa-
tion at larger strain amplitudes. The total number of parameters of the THM2 system is 30, 

and the identification error is 2 5.00%e  , namely twice that of the THM1 system. Additional 
THM2 components did not help improve the fitting between experimental and simulated 
curves, meaning that six THM2 is the limit for this case. In closing, more details on the mod-
elling approach for the THM1 can be found in Ref. [9], where the THM1 is solved analytical-
ly for the case of the single degree of freedom systems. Ongoing work aims to develop 
numerical implementation for the case of multi-degree of freedom systems. For the case of 
THM2, the system can be solved by using Newmark’s method combined with Newton-
Raphson iterations. 
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No. Component 
0k  

 kN mm  
1k  

 kN mm  
2k  

 kN mm  
yu  

 mm  
yhu  

 mm  

1 

 

1 2,k k
(1) 0.283532 0.489882 0(2) 64.809 

2 

 

1 2,k k
(1) 0.000282 0.905635 0(2) 136.491 

3 

 

1 2,k k
(1) 0.000246 0.877611 0(2) 108.657 

4 

 

0.863754 0.402485 -0.792654 7.146 125.542 

5 

 

0.157047 0.000238 -0.285050 43.938 151.692 

6 

 

0.172839 0.000547 -0.271989 18.760 80.117 

7 

 

0.056183 0.044945 -0.006864 3.331 21.299 

8 

 

3.225241 0(3) 0(3) 0.597 -(4) 

9 

 

67.445070 0(3) 0(3) 0.041 -(4) 

 2e  2.50 % 
 

Table 8: Mechanical system using the THM1 model components (33 parameters) 

(1)A very large value of 
0 1 2,k k k  corresponds to a stiff elastic spring and is neglected. 

(2)THM1 becomes a trilinear elastic spring for 0yu  . 
(3) THM1 becomes an elastoplastic element for 

1 2 0k k  . 

(4)Because 
1 2 0k k  , 

yhu does not denote any change of stiffness, it is inconsequential. 

 

4 CONCLUSIONS 

Two extensions of the well-known BHM are introduced for modelling hardening and sof-
tening effects observed in base isolators. More specifically, THM1 exhibits three plastic phas-
es and one elastic phase, while THM2 exhibits three plastic phases and two elastic phases. 
The change of slope in the plastic phases during unloading ( 0uu  ), does not occur at the 
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same displacement level for either model. Furthermore, the dissipated energy per cycle of 
amplitude au  decreases in the case of hardening and increases in the case of softening for the 

THM1 model, while in THM2 model the dissipated energy remains constant. A set of cyclic 
shear tests on an existing HDRB under a wide range of strain amplitudes shows that the shear 
behaviour observed can be described by a parallel system, which comprises only one type of 
component, namely the THM1 with identification error 2 2.50%e  . On the other hand, a par-
allel-type THM2 model fails in describe the behaviour of the HDRB since it does not account 
for increasing energy dissipation at larger amplitudes (the identification error here is 

2 5.00%e  ).  Compared to THM2, THM1 has the following advantages: (a) It accounts for 
larger energy dissipation at larger strain amplitudes; (b) it better describes the behaviour ob-
served during the loading ( 0uu  ) and unloading ( 0uu  ) paths in the HDRB; and (c) 
through a proper choice of parameters, can be reduced to simpler models, namely a trilinear 
elastic spring and an elastoplastic element.  
 
 

No. Component 
0k  

 kN mm  
1k  

 kN mm  
2k  

 kN mm  
yu  

 mm  
yhu  

 mm  

1 

 

3.316369 0.097634 0.066989 0.604 34.120 

2 

 

67.826800 0.034459 0.242161 0.041 181.563 

3 

 

0.583996 0.082570 0.258475 7.945 102.741 

4 

 

0.360200 0.159367 0.287472 128.456 139.534 

5 

 

0.315248 0.115504 0.225922 20.728 99.702 

6 

 

0.142166 0.010595 0.325443 43.731 162.318 

 2e  5.00% 
 

Table 9: Parallel mechanical system using the THM2 model (30 parameters) 
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Figure 4: Force-displacement curves of each separate component of the THM1 model 
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Figure 5: Identification of force-displacement curves of THM1 model using the 3rd cycle of harmonic tests at 10 
strain amplitudes, frequency 0.5 Hz, compressive stress 6 MPa (black color: numerical simulations; red color: 

experimental data) 
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Figure 6: (a) THM2 force-displacement curves; (b) comparisons with experimental data 
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